Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur Rev Med Pharmacol Sci ; 26(4): 1084-1090, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35253162

RESUMO

OBJECTIVE: Angiogenesis impairment is a common feature of diabetes mellitus (DM), whereas CD117+ bone marrow cells (BMCs) injury might be responsible for such complication. In this study, we studied the effect of hyperglycemia on the DNA damage and senility of CD117+ bone marrow cells. MATERIALS AND METHODS: We isolated CD117+ BMCs from the Streptozotocin (STZ) induced diabetes and healthy control mice. Oxidative stress was detected by flow cytometric analysis. γ-H2AX, which is the DNA damage mark, was detected by using Western blotting and immunofluorescence histochemistry. We also detected the expression of γ-H2AX and p16 by using Western blotting. RESULTS: Compared with the control mice, the level of reactive oxygen species (ROS) was increased significantly in the CD117+ BMCs collected from the diabetic mice (p<0.05), and the percentage of γ-H2AX positive cells was higher significantly (p<0.01). The expression of γ-H2AX and p16 was increased significantly in the CD117+ BMCs from the diabetic mice. CONCLUSIONS: Our experiments demonstrated the oxidative stress in CD117+ BMCs under DM conditions, while accelerating the DNA damage and senility in CD117+ BMCs as well.


Assuntos
Diabetes Mellitus Experimental , Hiperglicemia , Animais , Células da Medula Óssea/metabolismo , Dano ao DNA , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Camundongos , Estresse Oxidativo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA