Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 25(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31940983

RESUMO

Food plants contain hundreds of bioactive phytochemicals arising from different secondary metabolic pathways. Among these, the metabolic route of the amino acid Tryptophan yields a large number of plant natural products with chemically and pharmacologically diverse properties. We propose the identifier "indolome" to collect all metabolites in the Tryptophan pathway. In addition, Tryptophan-rich plant sources can be used as substrates for the fermentation by yeast strains to produce pharmacologically active metabolites, such as Melatonin. To pursue this technological development, we have developed a UHPLC-MS/MS method to monitor 14 Tryptophan, Tryptamine, amino-benzoic, and pyridine metabolites. In addition, different extraction procedures to improve the recovery of Tryptophan and its derivatives from the vegetal matrix were tested. We investigated soybeans, pumpkin seeds, sesame seeds, and spirulina because of their botanical diversity and documented healthy effects. Four different extractions with different solvents and temperatures were tested, and water extraction at room temperature was chosen as the most suitable procedure to extract the whole Tryptophan metabolites pattern (called by us "indolome") in terms of ease, high efficiency, short time, low cost, and sustainability. In all plant matrices, Tryptophan was the most abundant indole compound, while the pattern of its metabolites was different in the diverse plants extracts. Overall, 5-OH Tryptamine and Kynurenine were the most abundant compounds, despite being 100-1000-fold lower than Tryptophan. Melatonin was undetected in all extracts, but sesame showed the presence of a Melatonin isomer. The results of this study highlight the variability in the occurrence of indole compounds among diverse food plants. The knowledge of Tryptophan metabolism in plants represents a relevant issue for human health and nutrition.


Assuntos
Cucurbita/química , Análise de Alimentos , Glycine max/química , Espectrometria de Massas , Sementes/química , Sesamum/química , Triptofano/análise , Cromatografia Líquida
2.
Int J Hyg Environ Health ; 222(3): 494-502, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30685193

RESUMO

INTRODUCTION: Absorbed dose assessment from dermal exposure involves multiplying skin contamination by the dermal absorption coefficient, which is usually defined for the standard workday of 8 h. This strategy may suffer from limitations when the duration of exposure is extremely variable, such as in agricultural exposure to pesticides. OBJECTIVES: The aim of this study was to estimate the dose of mancozeb absorbed by agricultural pesticide applicators in a typical working day considering the real duration of exposure, to compare these estimates with those coming from the use of the Fixed Fractional Approach, and to assess the suitability of the dose estimates in the interpretation of biological monitoring results. METHODS: In a series of real-life field studies on 29 workers applying mancozeb in vineyards for 38 work days, three sets of data were collected: information regarding work activities for each work day, potential (on clothes) and actual skin exposure using the "patch" methodology, and excretion of ethylenethiourea (ETU) in the 24-h pre-exposure and 24-h post-exposure urine samples. The statistical analyses were done using the R Language and Environment for Statistical Computing. RESULTS: Accounting for the duration of exposure led to a substantial reduction in the absorbed dose estimates, compared to the estimates coming from the Fixed Fractional Approach. In particular, absorbed dose by the body, hands' and total absorbed dose were reduced by 50%, 81%, and 80% respectively. The body dose estimated considering both approaches still correlated better with post-exposure 24-h urine ETU levels than the hands' dose, although more than 90% of the estimated total absorbed dose comes from the hands. CONCLUSIONS: An accurate estimate of the absorbed dose, carried out considering the real duration of exposure, can result in a higher correlation with a biomarker of occupational exposure, such as urine ETU, or at least yield more accurate results. This can facilitate the interpretation of biological monitoring data in pesticide-exposed agricultural workers despite the absence of biological exposure limits. ETU should be evaluated as a potentially relevant source of exposure due to ethylenebisdithiocarbamates' (EBDCs) degradation in the formulated product or spray mixture.


Assuntos
Fazendeiros , Fungicidas Industriais , Maneb , Exposição Ocupacional/análise , Absorção Cutânea , Zineb , Etilenotioureia/metabolismo , Humanos , Masculino , Modelos Teóricos , Equipamento de Proteção Individual , Medição de Risco
3.
Environ Res ; 168: 54-61, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30268961

RESUMO

Penconazole (PEN) is a fungicide used in agriculture. The aim of this work was to evaluate the exposure to PEN in vineyard workers focusing on urinary biomarkers. Twenty-two agricultural workers were involved in the study; they were investigated during PEN applications and re-entry work, performed for 1-4 consecutive working days, for a total of 42 mixing and applications and 12 re-entries. Potential and actual dermal exposure, including hand exposure, were measured using pads and hand washes. Urine samples were collected starting before the first application, continuing during the work shift, and ending 48 h after the last shift. The determination of PEN in dermal samples and PEN metabolites in urine was performed by liquid chromatography tandem mass spectrometry. Dermal potential body exposure and actual total exposure showed median levels ranging from 18 to 3356µg and from 21 to 111 µg, respectively. Urinary monohydroxyl-derivative PEN-OH was the most abundant metabolite; its excretion rate peaked within 24 h after the work shift. In this period, median concentrations of PEN-OH and the carboxyl-derivative PEN-COOH ranged from 15.6 to 27.6 µg/L and from 2.5 to 10.2 µg/L, respectively. The concentration of PEN-OH during the work shift, in the 24 h after and in the 25-48 h after the work shift were correlated with actual body and total dermal exposure (Pearson's r from 0.279 to 0.562). Our results suggest that PEN-OH in the 24 h post-exposure urine is a promising candidate for biomonitoring PEN exposure in agricultural workers.


Assuntos
Fazendeiros , Fungicidas Industriais , Exposição Ocupacional , Biomarcadores , Monitoramento Ambiental , Fungicidas Industriais/toxicidade , Humanos , Triazóis
4.
Med Lav ; 106(4): 294-315, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26154472

RESUMO

INTRODUCTION: Models used in the pre-marketing evaluation do not cover all work scenarios and may over- or underestimate exposure. OBJECTIVES: Uncertainties present in the extrapolation from pre-marketing to the post-marketing warrant exposure and risk assessment in real-life working conditions. METHODS: Seven vineyard pesticide applicators were followed for a total of 12 work-days. A data collection sheet was developed specifically for this study. Workers' body exposure, hands, and head exposure were measured. Tebuconazole was analyzed using LC-MS/MS. RESULTS: Median potential and actual body exposures were 22.41 mg/kg and 0.49 mg/kg of active substance applied, respectively. The median protection factor provided by the coverall was 98% (range: 90-99%). Hand exposure was responsible for 61% of total actual exposure, and was reduced by more than 50% in workers using gloves. The German Model underestimated the exposure in one work-day, and grossly overestimated it in 3 work-days. CONCLUSIONS: High levels of potential body exposure were efficiently controlled by the cotton coverall. Use of personal protective devices, especially chemically-resistant gloves and head cover is the main determinant of skin protection. Field studies on pesticide exposure in real-life conditions and development of methods and tools for easier risk assessment are necessary to complement and confirm the risk assessment done in the authorization process.


Assuntos
Doenças dos Trabalhadores Agrícolas/prevenção & controle , Fungicidas Industriais/farmacocinética , Absorção Cutânea , Triazóis/farmacocinética , Aerossóis , Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Cromatografia Líquida , Contaminação de Equipamentos , União Europeia , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/análise , Fungicidas Industriais/toxicidade , Luvas Protetoras , Desinfecção das Mãos , Humanos , Itália , Concentração Máxima Permitida , Modelos Teóricos , Veículos Automotores , Exposição Ocupacional , Especificidade de Órgãos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Roupa de Proteção , Medição de Risco , Espectrometria de Massas em Tandem , Triazóis/administração & dosagem , Triazóis/análise , Triazóis/toxicidade , Vitis/microbiologia , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA