Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ann Work Expo Health ; 67(3): 379-391, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36617226

RESUMO

Low-cost particulate matter (PM) sensors provide new methods for monitoring occupational exposure to hazardous substances, such as flour dust. These devices have many possible benefits, but much remains unknown about their performance for different exposure monitoring strategies in the workplace. We explored the performance of PM sensors for four different monitoring strategies (time-weighted average and high time resolution, each quantitative and semi-quantitative) for assessing occupational exposure using low-cost PM sensors in a field study in the industrial bakery sector. Measurements were collected using four types of sensor (PATS+, Isensit, Airbeam2, and Munisense) and two reference devices (respirable gravimetric samplers and an established time-resolved device) at two large-scale bakeries, spread over 11 participants and 6 measurement days. Average PM2.5 concentrations of the low-cost sensors were compared with gravimetric respirable concentrations for 8-h shift periods and 1-min PM2.5 concentrations of the low-cost sensors were compared with time-resolved PM2.5 data from the reference device (quantitative monitoring strategy). Low-cost sensors were also ranked in terms of exposure for 8-h shifts and for 15-min periods with a shift (semi-quantitative monitoring strategy). Environmental factors and methodological variables, which can affect sensor performance, were investigated. Semi-quantitative monitoring strategies only showed more accurate results compared with quantitative strategies when these were based on shift-average exposures. The main factors that influenced sensor performance were the type of placement (positioning the devices stationary versus personal) and the company or workstation where measurements were collected. Together, these findings provide an overview of common strengths and drawbacks of low-cost sensors and different ways these can be applied in the workplace. This can be used as a starting point for further investigations and the development of guidance documents and data analysis methods.


Assuntos
Exposição Ocupacional , Material Particulado , Humanos , Material Particulado/análise , Exposição Ocupacional/análise , Poeira/análise , Farinha/análise , Substâncias Perigosas/análise , Monitoramento Ambiental/métodos
2.
Artigo em Inglês | MEDLINE | ID: mdl-33228125

RESUMO

(1) Background: Small, lightweight, low-cost optical particulate matter (PM) monitors are becoming popular in the field of occupational exposure monitoring, because these devices allow for real-time static measurements to be collected at multiple locations throughout a work site as well as being used as wearables providing personal exposure estimates. Prior to deployment, devices should be evaluated to optimize and quantify measurement accuracy. However, this can turn out to be difficult, as no standardized methods are yet available and different deployments may require different evaluation procedures. To gain insight in the relevance of different variables that may affect the monitor readings, six PM monitors were selected based on current availability and evaluated in the laboratory; (2) Methods: Existing strategies that were judged appropriate for the evaluation of PM monitors were reviewed and seven evaluation variables were selected, namely the type of dust, within- and between-device variations, nature of the power supply, temperature, relative humidity, and exposure pattern (peak and constant). Each variable was tested and analyzed individually and, if found to affect the readings significantly, included in a final correction model specific to each monitor. Finally, the accuracy for each monitor after correction was calculated; (3) Results: The reference materials and exposure patterns were found to be main factors needing correction for most monitors. One PM monitor was found to be sufficiently accurate at concentrations up to 2000 µg/m3 PM2.5, with other monitors appropriate at lower concentrations. The average accuracy increased by up to three-fold compared to when the correction model did not include evaluation variables; (4) Conclusions: Laboratory evaluation and readings correction can greatly increase the accuracy of PM monitors and set boundaries for appropriate use. However, this requires identifying the relevant evaluation variables, which are heavily reliant on how the monitors are used in the workplace. This, together with the lack of current consensus on standardized procedures, shows the need for harmonized PM monitor evaluation methods for occupational exposure monitoring.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Exposição Ocupacional , Material Particulado , Poluentes Atmosféricos/análise , Monitoramento Ambiental/economia , Monitoramento Ambiental/instrumentação , Humanos , Exposição Ocupacional/prevenção & controle , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA