Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Res Sq ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609314

RESUMO

Objective: The US Gulf region is heavily reliant on metal-emitting petrochemical and manufacturing industries. We characterized the effect of residential proximity to metal-emitting sites and metal body burden in Gulf states residents with particular attention to potential differential exposure burden by race. Methods: We measured toenail concentrations of arsenic, chromium, lead, manganese, mercury, and selenium using inductively coupled plasma mass spectrometry in 413 non-smoking men from the Gulf Long-term Follow-Up Study. Point sources of industrial metal emissions were identified using the US EPA's National Emissions Inventory (NEI) database and geocoded to participant residential addresses. For each metal, we assessed associations of toenail metal concentrations with the inverse-distance weighted number of emissions sites and volume of air-metal emissions within 30 km radial buffers of participant residences using multivariable linear regression. Results were stratified by race. Results: Compared to self-identified Non-Hispanic (NH) White participants, NH Black participants lived closer to NEI sites but had 23-70% lower toenail metal concentrations adjusting for other personal/behavioral factors. Residential proximity to lead-emitting NEI sites was positively associated with toenail Pb concentration while proximity to mercury-emitting NEI sites was inversely associated with toenail Hg concentration. Findings for lead were significantly attenuated after adjustment for neighborhood-level socioeconomic factors. Conclusion: Residential proximity to lead-emitting NEI sites in the US Gulf region is associated with a higher body burden of lead. However, this relationship may be driven in part by non-NEI factors related to residence in industry-adjacent neighborhoods.

2.
Environ Health Perspect ; 129(11): 117004, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34766834

RESUMO

BACKGROUND: Emerging evidence suggests social, health, environmental, and economic benefits of urban agriculture (UA). However, limited work has characterized the risks from metal contaminant exposures faced by urban growers and consumers of urban-grown produce. OBJECTIVES: We aimed to answer community-driven questions about the safety of UA and the consumption of urban-grown produce by measuring concentrations of nine metals in the soil, irrigation water, and urban-grown produce across urban farms and gardens in Baltimore, Maryland. METHODS: We measured concentrations of 6 nonessential [arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), lead (Pb), nickel (Ni)] and three essential [copper (Cu), manganese (Mn), zinc (Zn)] metals in soil, irrigation water, and 13 types of urban-grown produce collected from 104 UA sites. We compared measured concentrations to existing public health guidelines and analyzed relationships between urban soil and produce concentrations. In the absence of guidelines for metals in produce, we compared metals concentrations in urban-grown produce with those in produce purchased from farmers markets and grocery stores (both conventionally grown and U.S. Department of Agriculture-certified organic). RESULTS: Mean concentrations of all measured metals in irrigation water were below public health guidelines. Mean concentrations of nonessential metals in growing area soils were below public health guidelines for Ba, Cd, Pb, and Ni and at or below background for As and Cr. Though we observed a few statistically significant differences in concentrations between urban and nonurban produce items for some combinations, no consistent or discernable patterns emerged. DISCUSSION: Screening soils for heavy metals is a critical best practice for urban growers. Given limitations in existing public health guidelines for metals in soil, irrigation water, and produce, additional exposure assessment is necessary to quantify potential human health risks associated with exposure to nonessential metals when engaging in UA and consuming urban-grown produce. Conversely, the potential health benefits of consuming essential metals in urban-grown produce also merit further research. https://doi.org/10.1289/EHP9431.


Assuntos
Metais Pesados , Poluentes do Solo , Baltimore , Estudos Transversais , Monitoramento Ambiental , Fazendas , Jardins , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Água
3.
ALTEX ; 37(1): 3-23, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960937

RESUMO

Complementing the human genome with an exposome reflects the increasingly obvious impact of environmental exposure, which far exceeds the role of genetics, on human health. Considering the complexity of exposures and, in addition, the reactions of the body to exposures - i.e., the exposome - reverses classical exposure science where the precise measurement of single or few exposures is associated with specific health or environmental effects. The complete description of an individual's exposome is impossible; even less so is that of a population. We can, however, cast a wider net by foregoing some rigor in assessment and compensating with the statistical power of rich datasets. The advent of omics technologies enables a relatively cheap, high-content description of the biological effects of substances, especially in tissues and biofluids. They can be combined with many other rich data-streams, creating big data of exposure and effect. Computational methods increasingly allow data integration, discerning the signal from the noise and formulating hypotheses of exposure-effect relationships. These can be followed up in a targeted way. With a better exposure element in the risk equation, exposomics - new kid on the block of risk assessment - promises to identify novel exposure (interactions) and health/environment effect associations. This may also create opportunities to prioritize the more relevant chemicals for risk assessment, thereby lowering the burden on hazard assessment in an expo-sure-driven approach. Technological developments and synergies between approaches, quality assurance (ultimately as Good Exposome Practices), and the integration of mechanistic thinking will advance this approach.


Assuntos
Exposição Ambiental , Expossoma , Substâncias Perigosas/toxicidade , Alternativas ao Uso de Animais , Simulação por Computador , Saúde Ambiental , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Biológicos , Medição de Risco
4.
J Occup Environ Hyg ; 15(9): 664-675, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30081757

RESUMO

Increased understanding of influenza transmission is critical for pandemic planning and selecting appropriate controls for healthcare personnel safety and health. The goals of this pilot study were to assess environmental contamination in different areas and at two time periods in the influenza season and to determine the feasibility of using surgical mask contamination to evaluate potential exposure to influenza virus. Bioaerosol samples were collected over 12 days (two 6-day sessions) at 12 locations within a student health center using portable two-stage bioaerosol samplers operating 8 hr each day. Surface samples were collected each morning and afternoon from common high-contact non-porous hard surfaces from rooms and locations where bioaerosol samplers were located. Surgical masks worn by participants while in contact with patients with influenza-like illness were collected. A questionnaire administered to each of the 12 participants at the end of each workday and another at the end of each workweek assessed influenza-like illness symptoms, estimated the number of influenza-like illness patient contacts, hand hygiene, and surgical mask usage. All samples were analyzed using qPCR. Over the 12 days of the study, three of the 127 (2.4%) bioaerosol samples, 2 of 483 (0.41%) surface samples, and 0 of 54 surgical masks were positive for influenza virus. For the duration of contact that occurred with an influenza patient on any of the 12 days, nurse practitioners and physicians reported contacts with influenza-like illness patients >60 min, medical assistants reported 15-44 min, and administrative staff reported <30 min. Given the limited number of bioaerosol and surface samples positive for influenza virus in the bioaerosol and surface samples, the absence of influenza virus on the surgical masks provides inconclusive evidence for the potential to use surgical masks to assess exposure to influenza viruses. Further studies are needed to determine feasibility of this approach in assessing healthcare personnel exposures. Information learned in this study can inform future field studies on influenza transmission.


Assuntos
Pessoal de Saúde , Influenza Humana/transmissão , Máscaras/virologia , Aerossóis , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Maryland/epidemiologia , Exposição Ocupacional , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Projetos Piloto , RNA Viral , Reação em Cadeia da Polimerase em Tempo Real , Estudantes , Inquéritos e Questionários , Local de Trabalho
5.
J Expo Sci Environ Epidemiol ; 28(6): 522-529, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29288255

RESUMO

E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM10) and real-time total volatile organic compounds (TVOCs), CO2 and NO2 concentrations were measured. Integrated samples of air nicotine and PM10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM10 was 1800 µg/m3, 12-fold higher than the EPA 24-h regulation (150 µg/m3). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM10 and TVOC concentrations were highly correlated with CO2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 µg/m3, equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM10, air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Nicotina/análise , Dióxido de Nitrogênio/análise , Material Particulado/análise , Vaping , Compostos Orgânicos Voláteis/análise , Aerossóis/análise , Aerossóis/química , Poluentes Atmosféricos/análise , Congressos como Assunto , Sistemas Eletrônicos de Liberação de Nicotina , Monitoramento Ambiental , Humanos , Maryland
6.
J Occup Environ Hyg ; 15(2): 87-98, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29083958

RESUMO

Development of an air quality monitoring network with high spatio-temporal resolution requires installation of a large number of air pollutant monitors. However, state-of-the-art monitors are costly and may not be compatible with wireless data logging systems. In this study, low-cost electro-chemical sensors manufactured by Alphasense Ltd. for detection of CO and oxidative gases (predominantly O3 and NO2) were evaluated. The voltages from three oxidative gas sensors and three CO sensors were recorded every 2.5 sec when exposed to controlled gas concentrations in a 0.125-m3 acrylic glass chamber. Electro-chemical sensors for detection of oxidative gases demonstrated sensitivity to both NO2 and O3 with similar voltages recorded when exposed to equivalent environmental concentrations of NO2 or O3 gases, when evaluated separately. There was a strong linear relationship between the recorded voltages and target concentrations of oxidative gases (R2 > 0.98) over a wide range of concentrations. Although a strong linear relationship was also observed for CO concentrations below 12 ppm, a saturation effect was observed wherein the voltage only changes minimally for higher CO concentrations (12-50 ppm). The nonlinear behavior of the CO sensors implied their unsuitability for environments where high CO concentrations are expected. Using a manufacturer-supplied shroud, sensors were tested at 2 different flow rates (0.25 and 0.5 Lpm) to mimic field calibration of the sensors with zero air and a span gas concentration (2 ppm NO2 or 15 ppm CO). As with all electrochemical sensors, the tested devices were subject to drift with a bias up to 20% after 9 months of continuous operation. Alphasense CO sensors were found to be a proper choice for occupational and environmental CO monitoring with maximum concentration of 12 ppm, especially due to the field-ready calibration capability. Alphasense oxidative gas sensors are usable only if it is valuable to know the sum of the NO2 and O3 concentrations.


Assuntos
Monóxido de Carbono/análise , Técnicas Eletroquímicas/instrumentação , Dióxido de Nitrogênio/análise , Ozônio/análise , Poluentes Atmosféricos/análise , Técnicas Eletroquímicas/economia , Monitoramento Ambiental/economia , Monitoramento Ambiental/instrumentação
7.
Environ Health Perspect ; 125(8): 087009, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28885976

RESUMO

BACKGROUND: Spray irrigation for land-applying livestock manure is increasing in the United States as farms become larger and economies of scale make manure irrigation affordable. Human health risks from exposure to zoonotic pathogens aerosolized during manure irrigation are not well understood. OBJECTIVES: We aimed to a) estimate human health risks due to aerosolized zoonotic pathogens downwind of spray-irrigated dairy manure; and b) determine which factors (e.g., distance, weather conditions) have the greatest influence on risk estimates. METHODS: We sampled downwind air concentrations of manure-borne fecal indicators and zoonotic pathogens during 21 full-scale dairy manure irrigation events at three farms. We fit these data to hierarchical empirical models and used model outputs in a quantitative microbial risk assessment (QMRA) to estimate risk [probability of acute gastrointestinal illness (AGI)] for individuals exposed to spray-irrigated dairy manure containing Campylobacter jejuni, enterohemorrhagic Escherichia coli (EHEC), or Salmonella spp. RESULTS: Median risk estimates from Monte Carlo simulations ranged from 10-5 to 10-2 and decreased with distance from the source. Risk estimates for Salmonella or EHEC-related AGI were most sensitive to the assumed level of pathogen prevalence in dairy manure, while risk estimates for C. jejuni were not sensitive to any single variable. Airborne microbe concentrations were negatively associated with distance and positively associated with wind speed, both of which were retained in models as a significant predictor more often than relative humidity, solar irradiation, or temperature. CONCLUSIONS: Our model-based estimates suggest that reducing pathogen prevalence and concentration in source manure would reduce the risk of AGI from exposure to manure irrigation, and that increasing the distance from irrigated manure (i.e., setbacks) and limiting irrigation to times of low wind speed may also reduce risk. https://doi.org/10.1289/EHP283.


Assuntos
Irrigação Agrícola/métodos , Indústria de Laticínios , Esterco/microbiologia , Modelos Teóricos , Medição de Risco
8.
J Air Waste Manag Assoc ; 62(7): 773-82, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22866579

RESUMO

The main objectives of this study are to (1) characterize chemical constituents of particulate matter (PM) and (2) compare overall differences in PM collected from eight US. counties. This project was undertaken as a part of a larger research program conducted by the Johns Hopkins Particulate Matter Research Center (JHPMRC). The goal of the JHPMRC is to explore the relationship between health effects and exposure to ambient PM of differing composition. The JHPMRC collected weekly filter-based ambient fine particle samples from eight US. counties between January 2008 and January 2010. Each sampling effort consisted of a 5-6-week sampling period. Filters were analyzed for 25 metals using inductively coupled plasma mass spectrometry (ICP-MS). Overall compositional differences were ranked by principal component analysis (PCA). The results showed that weekly concentrations of each element varied 3-40 times between the eight counties. PCA showed that the first five principal components explained 85% of the total variance. The authors found significant overall compositional differences in PM as the average of standardized principal component scores differed between the counties. These findings demonstrate PCA is a useful tool to identify the differences in PM compositional mixtures by county. These differences will be helpful for epidemiological and toxicological studies to help explain why health risks associated with PM exposure are different in locations with similar mass concentrations of PM.


Assuntos
Poluentes Atmosféricos/análise , Metais/análise , Material Particulado/análise , Algoritmos , Monitoramento Ambiental , Espectrometria de Massas , Análise de Componente Principal , Manejo de Espécimes , Estados Unidos
9.
Environ Sci Technol ; 41(7): 2467-72, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17438801

RESUMO

Exposure assessment of biological aerosols requires trade-offs between efficient sampling of airborne microorganisms as either particles or viable units. The main objective of this work was to characterize aspects of bioaerosol measurement efficiency. A known concentration of the vegetative bacteria Pantoea agglomerans was spiked onto different samplers (AGI-30, BioSampler, and membrane filters) and then run for increasing time periods using HEPA filtered air. Measurement efficiency was evaluated based on total, viable, and culturable counts. Total and viable counts were determined by flow-cytometry (FCM); culturable counts were evaluated by standard plating. FCM as a method for assaying viability showed excellent agreement with known proportions of live/dead organisms (slope = 0.82, R(2) = 0.99). P. agglomerans recoveries (total, viable, and culturable) in order of best sampler performance included the BioSampler (75%, 52%, and 50%), filtration (50%, 13%, and 2%), and the AGI-30 (<30%, 15%, and 5%). The difference between viability and culturability provided an indication of viable but nonculturable (VBNC) cells. VBNC efficiency for sampling by filter, AGI-30, and BioSampler was 80%, 50%, and 100%, respectively. This research helps characterize recovery, survival, and culturability efficiencies while sampling environmentally sensitive airborne bacteria for purposes of exposure assessment, epidemiologic studies, and homeland security.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Atmosfera/análise , Monitoramento Ambiental/métodos , Citometria de Fluxo/métodos , Pantoea/isolamento & purificação
10.
Environ Sci Technol ; 39(24): 9649-55, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16475347

RESUMO

Poor air quality within swine concentrated animal feeding operations (CAFOs) poses a threat to workers, the surrounding community, and farm production. Accordingly, the current study was conducted to evaluate a technology for reducing air pollution including particulate matter (PM), viable bacteria, and ammonia within such a facility. The technology consists of an acid-oil-alcohol aerosol applied daily. Its effectiveness was evaluated by comparing air quality from before to after treatment and between treated and untreated sides of a barn separated by an impervious partition. On the untreated side, air quality was typical for a swine CAFO, with mean PM2.5 of 0.28 mg/m3 and PM(TOT) of 1.5 mg/m3. The treatment yielded a reduction in PM concentration of 75-90% from before to after treatment. Effectiveness increased with time, application, and particle size (40% reduction for 1 microm and 90% for >10 microm). Airborne bacteria levels (total bacteria, Enterobacteriaceae, and gram-positive cocci) decreased one logarithmic unit after treatment. In contrast, treatment had no effect on ammonia concentrations. These findings demonstrate the effectiveness of an intervention in yielding exposure and emission reductions.


Assuntos
Aerossóis/farmacologia , Criação de Animais Domésticos , Enterobacteriaceae/efeitos dos fármacos , Cocos Gram-Positivos/efeitos dos fármacos , Ácidos/química , Poluição do Ar em Ambientes Fechados , Álcoois/química , Amônia/análise , Animais , Toxinas Bacterianas/toxicidade , Monitoramento Ambiental , Óleos/química , Medição de Risco , Suínos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA