Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Revista
País de afiliação
Intervalo de ano de publicação
1.
Animal ; 12(8): 1652-1661, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29198219

RESUMO

Over the past 100 years, the French livestock sector has experienced significant intensification that has occurred in different ways across the country. Specifically, France has changed from a homogeneous state with most of the agricultural area covered by grasslands and a uniform distribution of animals, to a heterogeneous state characterised by an uneven distribution of grasslands, livestock numbers and livestock species. Studying the dynamics of this change is fundamental to the identification of drivers that shaped the various intensification trajectories and led to these different states, as well as to the prediction of future changes. Hence, the objective of this study was to characterise the trajectories undertaken by the French livestock sector to understand the intensification process and the role of socioeconomic, land use and production-related factors. A set of 10 indicators was employed to analyse the main changes between 1938 and 2010, using principal component analysis followed by a clustering of the 88 French departments. Between 1938 and 2010, significant increases in farm size, mechanisation, labour productivity and the stocking rates of monogastrics enabled the French livestock sector to double its production. The most important changes involved mechanisation (with the number of tractors per hectare (ha) rising from 0.0012 to 0.0053), labour productivity (improving from 8.6 to 35.9 ha/worker), livestock production (e.g. milk production increasing from 758 to 1856 l/ha of fodder area) and stocking rates (rising from 0.57 to 0.98 livestock units (LU) per ha). The increased heterogeneity apparent in the patterns of change throughout France's departments was captured by clustering four trajectories. Two trajectories were formed by departments that experienced strong specialisation towards livestock production, with one type mainly orientated towards high-intensive dairy, poultry and pig landless production systems, and a second type orientated towards extensive beef grazing production systems. Another trajectory corresponded to departments that specialised in crop production with high labour productivity; mixed crop-livestock systems were still maintained at the margins of this group of departments. The fourth trajectory corresponded to the lowest livestock population and productivity levels. The increase in mechanisation during the period was important but uniform, with no significant differences between the trajectories. This typology of intensification trajectories will enable the targeting of specific areas in which the detrimental impacts of livestock intensification require mitigation and provide guidance for future livestock sector developments.


Assuntos
Criação de Animais Domésticos , Gado , Agricultura , Ração Animal , Criação de Animais Domésticos/economia , Criação de Animais Domésticos/tendências , Animais , Bovinos , Fazendas , França , Suínos
2.
Animal ; 8(12): 2027-37, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25170767

RESUMO

Environmental impacts of 15 European pig farming systems were evaluated in the European Union Q-PorkChains project using life cycle assessment. One conventional and two non-conventional systems were evaluated from each of the five countries: Denmark, The Netherlands, Spain, France and Germany. The data needed for calculations were obtained from surveys of 5 to 10 farms from each system. The systems studied were categorised into conventional (C), adapted conventional (AC), traditional (T) and organic (O). Compared with C systems, AC systems differed little, with only minor changes to improve meat quality, animal welfare or environmental impacts, depending on the system. The difference was much larger for T systems, using very fat, slow-growing traditional breeds and generally outdoor raising of fattening pigs. Environmental impacts were calculated at the farm gate and expressed per kg of pig live weight and per ha of land used. For C systems, impacts per kg LW for climate change, acidification, eutrophication, energy use and land occupation were 2.3 kg CO2-eq, 44.0 g SO2-eq, 18.5 g PO4-eq, 16.2 MJ and 4.1 m2, respectively. Compared with C, differences in corresponding mean values were +13%, +5%, 0%, +2% and +16% higher for AC; +54%, +79%, +23%, +50% and +156% for T, and +4%, -16%, +29%, +11% and +121% for O. Conversely, when expressed per ha of land use, mean impacts were 10% to 60% lower for T and O systems, depending on the impact category. This was mainly because of higher land occupation per kg of pig produced, owing to feed production and the outdoor raising of sows and/or fattening pigs. The use of straw bedding tended to increase climate change impact per kg LW. The use of traditional local breeds, with reduced productivity and feed efficiency, resulted in higher impacts per kg LW for all impact categories. T systems with extensive outdoor raising of pigs resulted in markedly lower impact per ha of land used. Eutrophication potential per ha was substantially lower for O systems. Conventional systems had lower global impacts (global warming, energy use, land use), expressed per kg LW, whereas differentiated systems had lower local impacts (eutrophication, acidification), expressed per ha of land use.


Assuntos
Criação de Animais Domésticos/métodos , Bem-Estar do Animal , Mudança Climática , Meio Ambiente , Suínos/fisiologia , Criação de Animais Domésticos/classificação , Animais , Conservação dos Recursos Naturais/métodos , União Europeia
3.
Animal ; 7(4): 673-81, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23190699

RESUMO

Mixed crop-livestock systems, combining livestock and cash crops at farm level, are considered to be suitable for sustainable intensification of agriculture. Ensuring the survival of mixed crop-livestock systems is a challenge for European agriculture: the number of European mixed crop-livestock farms has been decreasing since 1970. Analysis of farming system dynamics may elucidate past changes and the forces driving this decline. The objectives of this study were (i) to identify the diversity of paths that allowed the survival of mixed crop-livestock farming and (ii) to elucidate the driving forces behind such survival. We analysed the variety of farm trajectories from 1950 to 2005. We studied the entire farm population of a case study site, located in the 'Coteaux de Gascogne' region. In this less favoured area of south-western France, farmers have limited specialisation. Currently, half of the farms use mixed crop-livestock systems. The data set of 20 variables for 50 farms on the basis of six 10-year time steps was collected through retrospective surveys. We used a two-step analysis including (i) a visual assessment of the whole population of individual farm trajectories and (ii) a computer-based typology of farm trajectories on the basis of a series of multivariate analyses followed by automatic clustering. The European Common Agricultural Policy, market globalisation and decreasing workforce availability were identified as drivers of change that favoured the specialisation process. Nevertheless, farmers' choices and values have opposed against these driving forces, ensuring the survival of some mixed crop-livestock farming systems. The trajectories were clustered into five types, four of which were compatible with mixed crop-livestock systems. The first type was the maximisation of autonomy by combining crops and livestock. The second type was diversification of production to exploit economies of scope and protect the farm against market fluctuations. The other two types involved enlargement and progressive adaptation of the farm to the familial workforce. The survival of mixed crop-livestock systems in these two types is largely dependent on workforce availability. Only one type of trajectory, on the basis of enlargement and economies of scale, did not lead to mixed crop-livestock systems. In view of the current evolution of the driving forces, maximising autonomy and diversification appear to be suitable paths to deal with current challenges and maintain mixed crop-livestock systems in Europe.


Assuntos
Agricultura/métodos , Produtos Agrícolas , Gado , Agricultura/tendências , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/tendências , Animais , França , Estudos Retrospectivos , Inquéritos e Questionários
4.
Animal ; 6(10): 1722-30, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22717157

RESUMO

Intensification and specialisation of agriculture in developed countries enabled productivity to be improved but had detrimental impacts on the environment and threatened the economic viability of a huge number of farms. The combination of livestock and crops, which was very common in the past, is assumed to be a viable alternative to specialised livestock or cropping systems. Mixed crop-livestock systems can improve nutrient cycling while reducing chemical inputs and generate economies of scope at farm level. Most assumptions underlying these views are based on theoretical and experimental evidence. Very few assessments of their environmental and economic advantages have nevertheless been undertaken in real-world farming conditions. In this paper, we present a comparative assessment of the environmental and economic performances of mixed crop-livestock farms v. specialised farms among the farm population of the French 'Coteaux de Gascogne'. In this hilly region, half of the farms currently use a mixed crop-livestock system including beef cattle and cash crops, the remaining farms being specialised in either crops or cattle. Data were collected through an exhaustive survey of farms located in our study area. The economic performances of farming systems were assessed on 48 farms on the basis of (i) overall gross margin, (ii) production costs and (iii) analysis of the sensitivity of gross margins to fluctuations in the price of inputs and outputs. The environmental dimension was analysed through (i) characterisation of farmers' crop management practices, (ii) analysis of farm land use diversity and (iii) nitrogen farm-gate balance. Local mixed crop-livestock farms did not have significantly higher overall gross margins than specialised farms but were less sensitive than dairy and crop farms to fluctuations in the price of inputs and outputs considered. Mixed crop-livestock farms had lower costs than crop farms, while beef farms had the lowest costs as they are grass-based systems. Concerning crop management practices, our results revealed an intensification gradient from low to high input farming systems. Beyond some general trends, a wide range of management practices and levels of intensification were observed among farms with a similar production system. Mixed crop-livestock farms were very heterogeneous with respect to the use of inputs. Nevertheless, our study revealed a lower potential for nitrogen pollution in mixed crop-livestock and beef production systems than in dairy and crop farming systems. Even if a wide variability exists within system, mixed crop-livestock systems appear to be a way for an environmental and economical sustainable agriculture.


Assuntos
Agricultura/economia , Agricultura/métodos , Meio Ambiente , Criação de Animais Domésticos/economia , Criação de Animais Domésticos/métodos , Animais , Bovinos , Produtos Agrícolas/economia , Indústria de Laticínios/economia , Indústria de Laticínios/métodos , França , Modelos Teóricos , Ciclo do Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA