Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Int ; 146: 106213, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33276315

RESUMO

In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.


Assuntos
Catarata , Cristalino , Exposição Ocupacional , Lesões por Radiação , Catarata/epidemiologia , Catarata/etiologia , Humanos , Doses de Radiação , Lesões por Radiação/epidemiologia , Lesões por Radiação/etiologia , Radiação Ionizante
2.
Int J Radiat Biol ; 93(1): 48-57, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27813725

RESUMO

PURPOSE: Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. MATERIALS AND METHODS: Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. RESULTS: Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. CONCLUSIONS: Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas/efeitos da radiação , Testes para Micronúcleos/métodos , Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Bioensaio/normas , Europa (Continente) , Humanos , Linfócitos/citologia , Linfócitos/efeitos da radiação , Monitoramento de Radiação/normas , Reprodutibilidade dos Testes , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/efeitos da radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA