Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Pollut ; 325: 121354, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36878278

RESUMO

Abrasion of tires on road surfaces leads to the formation of tire and road wear particles (TRWPs). Approximately 5.9 million tonnes/year of TRWPs are emitted globally, and 12-20% of emissions generated on roads are transmitted into surface waters, where they can release (i.e., leach) chemical compounds that adversely affect aquatic species. To better understand the ecological risk of TRWPs, an acute, probabilistic ecological risk assessment model was developed and applied. This was a screening-level, conceptual ecological risk assessment (ERA) based on secondary data from published scientific studies. The model was demonstrated using British Columbia (BC) Highway 97 (TRWP source) and Kalamalka Lake (receiving water) in Canada, considering two spatial scenarios with varied highway (HWY) lengths and lake volumes. TRWP-derived chemical leachates considered for ERA were aniline, anthracene (ANT), benzo(a)pyrene (B(a)P), fluoranthene (Fl), mercaptobenzothiazole (MBT), and zinc (Zn). An assumed 'total TRWP-derived leachate set' was also assessed, representing all compounds present in tire-derived leachate test solutions. The results indicated the risk to aquatic species in two spatial scenarios. In scenario 1, ecotoxicity risk was high from exposure to TRWP-derived zinc and the total TRWP-derived leachate set. Scenario 2 results indicated acute risk was high from all TRWP-derived chemicals examined, except MBT. This preliminary ecological risk screening provides an early signal that freshwater lakes adjacent to busy highways may be at risk from TRWP contamination, indicating a need for further research. This research is the first ERA of TRWPs in Canada, and the results and methodology provide a foundation for future research and solutions development.


Assuntos
Compostos Orgânicos , Água , Água Doce , Zinco , Colúmbia Britânica
2.
J Environ Manage ; 325(Pt B): 116537, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334449

RESUMO

Due to rapid population growth, urbanization, water contamination, and climate change, global water resources are under increasing pressure. Water utilities apply drinking water management strategies (DWMS) to ensure that water is safe for drinking. However, in recent years, due to increased inclination towards climate change, environmental emissions, and sustainable development goals; the environmental and economic performance of DWMSs is getting attention. An integrated framework combining life cycle thinking and water quality assessment techniques was developed in this study to evaluate the DWMSs' performance in terms of water quality, environment, and economics. Six DWMSs were assessed using the integrated framework as a case study. The environmental impacts in terms of human health, ecosystem, and resource use ranged from 1.46E-06 to 4.01E-06 DALY, 9.35E-10 to 3.80E-09 species.yr, and 0.0025-0.0071 USD-$, respectively. Pollution water index (PWI) and cost-benefit analysis (CBA) were used as decision-making techniques to assess the overall performance and suitability of DWMSs under given settings. The DWMSs with surface water as a source or ones providing relatively more degree of treatment have a relatively high PWI score (i.e., ≈0.31), reflective of high environmental impacts and water pollution compared to other alternatives. The CBA scores of selected alternatives ranged between 0.22 and 1.0. Furthermore, it was identified that DWMSs applied on relatively bigger water distribution systems can outweigh their costs (i.e., environmental and economic impacts). The proposed framework and approaches are flexible as they can incorporate different criteria in evaluating the performance and applicability of DWMSs.


Assuntos
Água Potável , Ecossistema , Humanos , Meio Ambiente , Recursos Hídricos , Abastecimento de Água
3.
J Hazard Mater ; 432: 128659, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35303666

RESUMO

This study presents a novel life cycle assessment-based framework for low-impact offshore oil spill response waste (OSRW) management. The framework consists of design of experiment, life cycle assessment (LCA), multi-criteria decision analysis (MCDA), operational cost analysis, and generation of regression models for impact prediction. The framework is applied to four OSRW management strategies as different combinations of solid and liquid oily waste collection, segregation, transportation, and treatment/disposal technologies. Hypothetical scenarios based on oily waste compositions are developed, and the associated environmental impacts and operational costs are evaluated. The LCA results show that oily waste composition accounts for < 5% of the total environmental impacts. Chemical demulsification has the highest total impacts due to high marine ecotoxicity and human toxicity, followed by incineration and transportation. The cost analysis reveals that the strategy comprised of centrifugation and landfilling is most preferable while the combination of chemical demulsification and incineration is least favorable. The strategy of combined use of centrifugation and landfilling is ranked as the most suitable in the MCDA. Regression models are developed to predict environmental impacts based on important factors. The framework can help waste management practitioners select low-impact strategies for handling offshore OSRW.


Assuntos
Poluição por Petróleo , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Incineração , Poluição por Petróleo/análise , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos
4.
Renew Sustain Energy Rev ; 135: 110199, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34234620

RESUMO

Financial Incentives (FIs) for green buildings are a major component of energy policy planning and play a vital role in the promotion of sustainable development and carbon mitigation strategies. Despite the presence of numerous FIs in Canada, there is still a lack of understanding on their distribution and effectiveness. This review first investigates the FIs available for residential and commercial buildings in Canada, and then performs a comprehensive review of studies related to FIs' effectiveness evaluation. It is found that FIs for buildings in Canada can be distributed into four categories: tax, loans, grants, and rebates. Among these, rebates from utility providers are the most common and are administered in all provinces. In addition to these, special incentives are available for three end-users (low-income, aboriginal people, landlords and tenants) and for three types of buildings (heritage, non-profit and energy rated). A clear contrast is observed on FIs offered in three regulatory regimes (Federal, provincial and municipal). Four provinces (Alberta, British Columbia, Ontario and Quebec) are leading in green building efforts. The in-depth literature review was also used to develop an understanding on the criteria used in effectiveness evaluation and the factors impacting effectiveness. Based on the findings of different studies on FIs effectiveness, a generic approach for evaluation of FIs is proposed that can help in deploying successful FIs programs. The results of this review are of importance to the policymakers, government authorities, and utilities engaged in designing and improving FIs for energy efficient buildings.

5.
J Environ Manage ; 293: 112891, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34289590

RESUMO

An integrated geospatial correlation analysis (GCA)-human health risk assessment (HHRA) approach was developed to investigate abandoned industrial sites featured by heterogeneous contamination data. Critical areas of high health risk concerns can be prioritized for remediation using the integrated approach. An abandoned chemical complex site in Hubei, China was investigated as a case study. GCA and HHRA were performed using soil and groundwater sampling data collected in 2016 and 2019. Benzene, chlorobenzene, dichlorobenzenes, 2-nitrochlorobenzene, and α-hexachlorocyclohexane were determined to be critical contaminants in soil. The 2019 sampling data revealed new contaminated locations that were not found in the 2016 sampling campaign. High concentrations (89.81-386.55 mg/L) of vinyl chloride were also found in groundwater samples. Several critical location clusters of high concentrations of dichlorobenzenes, chlorobenzene, and α-hexachlorocyclohexane were found within the site according to the GCA outcomes. These contaminants could pose significant cancer and non-cancer risks to onsite workers. The critical areas were ranked according to cancer and non-cancer risks estimated by HHRA, respectively, for informed remediation planning. Among the critical contaminants, α-hexachlorocyclohexane, 2-nitrochlorobenzene, and 1,4-dichlorobenzene in soil, as well as vinyl chloride in groundwater, contributed a predominant part to the total health risk. The integrated approach can be used to assess the contamination of other similar abandoned industrial complex sites.


Assuntos
Água Subterrânea , Poluentes do Solo , Poluentes Químicos da Água , China , Monitoramento Ambiental , Humanos , Medição de Risco , Poluentes do Solo/análise , Poluentes Químicos da Água/análise
6.
J Hazard Mater ; 410: 124570, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33223322

RESUMO

Oil-based drill cuttings (OBDCs) were managed in two scenarios including low-temperature thermal desorption (LTTD) and secure landfill through a case study. The removal of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in OBDCs by LTTD under different conditions was investigated. Probabilistic human health risk assessment was performed to quantify the health risk posed to waste management workers under the two scenarios, while the associated costs were also analyzed. The results show that LTTD at 300 °C for >20 min could remove 96.27% of PAHs in OBDCs but its removal effect on heavy metals was not significant. It was found that cancer risks posed by PAHs in both securely landfilled and LTTD-treated OBDCs were not significant (<1e-06); however, significant cancer risks (7.95e-05-9.45e-05) were identified for exposure to toxic heavy metals. Increased health risk was observed as a result of exposure to LTTD treatment residues compared to securely landfilled OBDCs. Inhalation of chromium(VI) and oral ingestion of arsenic in OBDCs were critical exposure routes. Both cancer and non-cancer risks in the secure landfill scenario were negligible. The cost analysis results suggest that LTTD combined with stabilization/solidification could be more economically attractive than secure landfill for the handling of OBDCs.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluição Ambiental , Humanos , Metais Pesados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Temperatura , Instalações de Eliminação de Resíduos
7.
J Hazard Mater ; 401: 123865, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113751

RESUMO

The life cycle impacts of treatment of typical oil-based drill cuttings (OBDCs) using three low-temperature thermal desorption (LTTD)-based systems, including thermomechanical cuttings cleaner (TCC), screw-type dryer (STD), and rotary drum dryer (RDD), were explored with a case study in British Columbia, Canada. Two energy supply scenarios, including diesel generator-based onsite (scenario i) and hydropower-based offsite (scenario ii) treatments, were considered in the assessment. The results show that RDD generated the lowest life cycle impacts in terms of damages to human health, ecosystems, and resources in scenario i. TCC-scenario ii generated the lowest impacts among all assessed cases, suggesting that using renewable energy can greatly reduce the impacts of LTTD-based OBDCs treatment. Also, net environmental benefits could be achieved considering the reuse of recovered oil, and the highest net environmental benefits were obtained in TCC-scenario ii. The process contribution analysis found that thermal desorption process accounted for 80-95 % of impacts in almost all impact categories. Energy consumption contours and linear regression models were also developed to help drilling waste managers estimate the life cycle impacts of using hydropower-driven TCC to treat OBDCs with different water and oil contents.

8.
Mar Pollut Bull ; 161(Pt A): 111705, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33022490

RESUMO

A fuzzy decision tree (FDT) based framework was developed to facilitate the selection of suitable oil spill response methods in the Arctic. Hypothetical oil spill cases were developed based on six identified attributes, while the suitability of three spill response methods (mechanical containment and recovery, use of chemical dispersants, and in-situ burning) for each spill case was obtained based on expert judgments. Fuzzy sets were used to address the associated uncertainties, and FDTs were then developed through generating: i) one decision tree for all three response methods (FDT-AP1) and ii) one decision tree for each response method and the development of linear regression models at terminal nodes (FDT-LR). The FDT-LR approach exhibited higher prediction accuracy than the FDT-AP1 approach. A maximum of 100% accurate predictions could be achieved for testing cases using it. On average, 75% of suitable oil spill response methods out of 10,000 performed iterations were predicted correctly.


Assuntos
Poluição por Petróleo , Regiões Árticas , Árvores de Decisões
9.
J Environ Manage ; 250: 109514, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31521925

RESUMO

Heavy metal(loids) in drinking water have long been a critical water quality concern. Chronic exposure to toxic heavy metals and metalloids (TMMs) through water ingestion can result in significant health risks to the public, while elevated concentrations of less toxic heavy metals (LTMs) can compromise the aesthetic value of water. An integrated probabilistic-fuzzy approach was developed to help water utilities assess water quality regarding heavy metal(loids) (WQHM). In probabilistic assessments, the probabilities of exceedance of health risk guidelines due to chronic exposure to TMMs and exceedance of aesthetic objectives due to elevated LTMs concentrations were quantified through Monte Carlo simulations. The probabilistic assessments can address the aleatory uncertainties due to random variations of health risk parameters. A fuzzy inference system, composed of fuzzy membership functions, operators, and rules, was used to facilitate interpreting WQHM based on the probabilities of guideline exceedance. Epistemic uncertainties due to vagueness and imprecision in linguistic variables used for describing health risks and aesthetic impacts can be reduced by fuzzy inferencing. The developed approach was applied to four water quality scenarios characterized by different combinations of TMMs and LTMs concentrations. Reasonable decisions were recommended for WQHM management under the four scenarios. The developed approach offers a useful tool for systematically assessing WQHM from a health risk mitigation perspective by addressing different types of uncertainties.


Assuntos
Água Potável , Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental , Medição de Risco , Incerteza , Qualidade da Água
10.
J Safety Res ; 68: 59-69, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30876521

RESUMO

INTRODUCTION: The safety of oil and gas pipelines is an increasing concern for the public, government regulators, and the industry. A safety management system cannot be efficient without having an effective integrity management program (IMP) and a strong safety culture. IMP is a formal document (policies, planning, scheduling, and technical processes) while safety culture is a measure of views, beliefs, and traditions about safety. For regulatory authorities and O&G companies, assessing the effectiveness of both the IMP and safety culture through regulatory audits is a daunting task with indistinct findings. METHOD: An integrated framework based on regulatory audits is developed to assess the maturity of safety culture based on IMP efficacy through risk-based approach by using failure mode and effect analysis (FMEA). The framework focuses on three distinct aspects, the probability of failure occurrence in case of the non-compliance of regulatory and program requirements, severity of non-compliance, and effectiveness of the corrective actions. RESULTS: Program requirements and performance indicators are translated into assessment questions which are grouped into 18 IMP components. Subsequently, these components are linked with four safety culture attributes. Sensitivity analysis revealed that four IMP components, i.e., organizational roles and responsibilities, policy and commitment, risk assessment, and training and competency, significantly affect the safety culture maturity level. CONCLUSIONS: Individual assessment of IMP and safety culture in O&G sector consumes extensive time and efforts in the auditing process. The framework facilitates the process by pursuing common criteria between IMP and safety culture. The O&G companies and regulator can prioritize the improvement plans and guidelines using the framework's findings. Practicalapplications: The integrated framework developed in this research will improve the existing assessment mechanism in O&G companies. The framework has been effectively implemented on a case of 17 upstream O&G pipeline-operating companies in the province of British Columbia, Canada.


Assuntos
Regulamentação Governamental , Medição de Risco/métodos , Gestão da Segurança , Colúmbia Britânica , Humanos , Método de Monte Carlo , Gás Natural , Cultura Organizacional , Petróleo , Avaliação de Programas e Projetos de Saúde
11.
J Environ Manage ; 235: 389-402, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30708276

RESUMO

The use of Low Impact Development (LID) alternatives requires the establishment of appropriate regulations and guidelines on acceptable practices and developing consensus among stakeholders, thus assuring the rights of all water-users and for conflict resolution. This content analysis aims to examine whether stormwater regulations and guidelines have addressed the use of LID alternatives in urban settings and compares the current state of regulations in the context of Canadian provinces and territories., A list of eight core criteria relevant to the implementation of LID has been identified and an ordinal scale ranging from 1 to 6 is proposed to track the progress towards LID-friendly regulations in each province. Furthermore, based on comparative assessment, Canadian provinces are categorized into three groups: 'highly, moderately, and slightly LID-friendly' to project a broad view of the current state of regulations required to promote LID alternatives. . Results show that LID has become the mainstream technology for stormwater management in Alberta, British Columbia, Ontario, and Quebec, which are categorized as 'highly LID-friendly' provinces. The provinces where LID alternatives have gained considerable acceptance are categorized as 'moderately LID-friendly', which include Manitoba, Newfoundland and Labrador, Nova Scotia, Prince Edward Island, and Saskatchewan. Lastly, the province of New Brunswick is categorized as 'slightly LID-friendly', because of very limited use of LID alternatives in the stormwater management regulations. These findings of this content analysis can be of significant value to strengthen provincial/territorial regulations and extend the benefits of LID in stormwater quality management and sustainable water management.


Assuntos
Conservação dos Recursos Naturais , Abastecimento de Água , Alberta , Colúmbia Britânica , Canadá , Terra Nova e Labrador , Ontário , Quebeque , Chuva
12.
Sci Total Environ ; 619-620: 281-290, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29149752

RESUMO

The rapid expansion of unconventional natural gas production has triggered considerable public concerns, particularly regarding environmental and human health (EHH) risks posed by various chemical additives used in hydraulic fracturing (HF) operations. There is a need to assess the potential EHH hazards of additives used in real-world HF operations. In this study, HF additive and fracturing fluid data was acquired, and EHH hazards were assessed using an indexing approach. The indexing system analyzed chemical toxicological data of different ingredients contained within additives and produced an aggregated EHH safety index for each additive, along with an indicator describing the completeness of the chemical toxicological data. The results show that commonly used additives are generally associated with medium-level EHH hazards. In each additive category, ingredients of high EHH concern were identified, and the high hazard designation was primarily attributed to ingredients' high aquatic toxicity and carcinogenic effects. Among all assessed additive categories, iron control agents were identified as the greatest EHH hazards. Lack of information, such as undisclosed ingredients and chemical toxicological data gaps, has resulted in different levels of assessment uncertainties. In particular, friction reducers show the highest data incompleteness with regards to EHH hazards. This study reveals the potential EHH hazards associated with chemicals used in current HF field operations and can provide decision makers with valuable information to facilitate sustainable and responsible unconventional gas production.

13.
J Hazard Mater ; 301: 187-96, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26364267

RESUMO

Acid rock drainage (ARD) is a major environmental problem that poses significant environmental risks during and after mining activities. A new methodology for environmental risk assessment based on probability bounds and a geochemical speciation model (PHREEQC) is presented. The methodology provides conservative and non-conservative ways of estimating risk of heavy metals posed to selected endpoints probabilistically, while propagating data and parameter uncertainties throughout the risk assessment steps. The methodology is demonstrated at a minesite located in British Columbia, Canada. The result of the methodology for the case study minesite shows the fate-and-transport of heavy metals is well simulated in the mine environment. In addition, the results of risk characterization for the case study show that there is risk due to transport of heavy metals into the environment.


Assuntos
Resíduos Industriais , Metais Pesados/toxicidade , Mineração , Modelos Teóricos , Poluentes Químicos da Água/toxicidade , Animais , Colúmbia Britânica , Lagos , Metais Pesados/análise , Oncorhynchus , Perciformes , Probabilidade , Medição de Risco/métodos , Incerteza , Poluentes Químicos da Água/análise
14.
J Environ Manage ; 119: 36-46, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23454412

RESUMO

The selection of remedial alternatives for mine sites is a complex task because it involves multiple criteria and often with conflicting objectives. However, an existing framework used to select remedial alternatives lacks multicriteria decision analysis (MCDA) aids and does not consider uncertainty in the selection of alternatives. The objective of this paper is to improve the existing framework by introducing deterministic and probabilistic MCDA methods. The Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) methods have been implemented in this study. The MCDA analysis involves processing inputs to the PROMETHEE methods that are identifying the alternatives, defining the criteria, defining the criteria weights using analytical hierarchical process (AHP), defining the probability distribution of criteria weights, and conducting Monte Carlo Simulation (MCS); running the PROMETHEE methods using these inputs; and conducting a sensitivity analysis. A case study was presented to demonstrate the improved framework at a mine site. The results showed that the improved framework provides a reliable way of selecting remedial alternatives as well as quantifying the impact of different criteria on selecting alternatives.


Assuntos
Tomada de Decisões , Recuperação e Remediação Ambiental/métodos , Mineração , Modelos Teóricos , Método de Monte Carlo , Medição de Risco , Sensibilidade e Especificidade
15.
Toxicology ; 313(2-3): 160-73, 2013 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23219588

RESUMO

The exposure and toxicological data used in human health risk assessment are obtained from diverse and heterogeneous sources. Complex mixtures found on contaminated sites can pose a significant challenge to effectively assess the toxicity potential of the combined chemical exposure and to manage the associated risks. A data fusion framework has been proposed to integrate data from disparate sources to estimate potential risk for various public health issues. To demonstrate the effectiveness of the proposed data fusion framework, an illustrative example for a hydrocarbon mixture is presented. The Joint Directors of Laboratories Data Fusion architecture was selected as the data fusion architecture and Dempster-Shafer Theory (DST) was chosen as the technique for data fusion. For neurotoxicity response analysis, neurotoxic metabolites toxicological data were fused with predictive toxicological data and then probability-boxes (p-boxes) were developed to represent the toxicity of each compound. The neurotoxic response was given a rating of "low", "medium" or "high". These responses were then weighted by the percent composition in the illustrative F1 hydrocarbon mixture. The resulting p-boxes were fused according to DST's mixture rule of combination. The fused p-boxes were fused again with toxicity data for n-hexane. The case study for F1 hydrocarbons illustrates how data fusion can help in the assessment of the health effects for complex mixtures with limited available data.


Assuntos
Misturas Complexas/toxicidade , Interpretação Estatística de Dados , Poluentes Ambientais/toxicidade , Hidrocarbonetos/toxicidade , Modelos Teóricos , Medição de Risco/métodos , Misturas Complexas/química , Misturas Complexas/farmacocinética , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Humanos , Hidrocarbonetos/química , Hidrocarbonetos/farmacocinética , Medição de Risco/estatística & dados numéricos
16.
Water Res ; 46(6): 1673-83, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22244994

RESUMO

An innovative framework for the performance assessment of a traditional water treatment plant (WTP) is presented that integrates the concepts of reliability, robustness, and Quantitative Microbial Risk Assessment (QMRA). Performance assessment for a WTP comprised of three units (i.e., unit 1: Coagulation/Flocculation and Sedimentation; unit 2: Filtration, and unit 3: Disinfection) was conducted. Performance functions for units 1, 2, and units 1 and 2 combined, were constructed by integrating turbidity robustness indices. Performance function for chlorine disinfection was developed based on the difference between achieved and required CT values. A health-based performance function was developed by comparing the target daily infection rate to the site-specific infection rate. It was used to identify whether the health-based target was met during the failures of units 1 to 3. Results obtained from the proposed performance functions can be used by operators to ensure that multiple barriers perform successfully under variable conditions.


Assuntos
Purificação da Água/métodos , Purificação da Água/normas , Desinfecção , Filtração , Floculação , Giardia/isolamento & purificação , Nefelometria e Turbidimetria , Reprodutibilidade dos Testes , Medição de Risco , Eliminação de Resíduos Líquidos , Microbiologia da Água
17.
J Hazard Mater ; 187(1-3): 574-84, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21292392

RESUMO

Chlorination for drinking water forms various disinfection byproducts (DBPs). Some DBPs are probably linked to human cancer (e.g., bladder, colorectal cancers) and other chronic and sub-chronic effects. This emphasizes the need to understand and characterize DBPs in drinking water and possible risks to human health. In this study, occurrences of DBPs throughout Canada were investigated. Trihalomethanes (THMs) were observed to be highest in Manitoba followed by Nova Scotia and Saskatchewan, while haloacetic acids were highest in Nova Scotia followed by Newfoundland and Labrador. Based on the characterization of DBPs, risk of cancer from exposure to THMs was predicted using ingestion, inhalation and dermal contact pathways of exposure. In Canada, approximately 700 cancer cases may be caused by exposure to THMs in drinking water. Medical expenses associated with these cancer incidents are estimated at some $140 million/year. Expense may be highest in Ontario (∼$47 million/year) followed by Quebec (∼$25 million/year) due to a greater population base. This paper suggests improvements in water treatment, source protection and disinfection processes, and caution in the use of alternative disinfectants to reduce DBPs. Finally, elements are provided to mitigate risks and reduce cost estimates in future studies.


Assuntos
Efeitos Psicossociais da Doença , Desinfecção , Neoplasias/induzido quimicamente , Canadá , Exposição Ambiental , Humanos , Neoplasias/economia , Poluentes Químicos da Água/toxicidade
18.
J Environ Manage ; 92(3): 892-901, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21093977

RESUMO

During disinfection, chlorine reacts with organic matter present in drinking water and forms various undesirable chlorinated by-products (CBPs). This paper describes a study of the spatial variability of human health risk (i.e., cancer effects) from CBP exposure through drinking water in a specific region. The region under study involves nine drinking water distribution systems divided into several zones based on their characteristics. The spatial distribution of cancer risk (CR) was estimated using two years of data (2006-2008) on various CBP species. In this analysis, trihalomethanes (THMs) and haloacetic acids (HAAs) served as surrogates for CBPs. Three possible routes of exposure (i.e., via ingestion, inhalation and dermal contact) were considered for each selected compound. The cancer risk assessment involved estimating a unit risk (R(T)) in each zone of the selected distribution systems. A probabilistic analysis based on Monte Carlo simulations was employed. Risk assessment results showed that cancer risk varied between systems, but also within individual systems. As a result, the population of the same region was not exposed to the same risk associated with CBPs in drinking water. Unacceptable levels (i.e., R(T) > 10(-4)) for the estimated CR were determined for several zones in the studied region. This study demonstrates that a spatial-based analysis performed to represent the spatial distribution of risk estimates can be helpful in identifying suitable risk management strategies. Suggestions for improving the risk analysis procedure are also presented.


Assuntos
Cloro/toxicidade , Abastecimento de Água/análise , Cloro/análise , Coleta de Dados , Exposição Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Limite de Detecção , Método de Monte Carlo , Medição de Risco
19.
Risk Anal ; 28(5): 1173-96, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18844861

RESUMO

This study illustrates a newly developed methodology, as a part of the U.S. EPA ecological risk assessment (ERA) framework, to predict exposure concentrations in a marine environment due to underwater release of oil and gas. It combines the hydrodynamics of underwater blowout, weathering algorithms, and multimedia fate and transport to measure the exposure concentration. Naphthalene and methane are used as surrogate compounds for oil and gas, respectively. Uncertainties are accounted for in multimedia input parameters in the analysis. The 95th percentile of the exposure concentration (EC(95%)) is taken as the representative exposure concentration for the risk estimation. A bootstrapping method is utilized to characterize EC(95%) and associated uncertainty. The toxicity data of 19 species available in the literature are used to calculate the 5th percentile of the predicted no observed effect concentration (PNEC(5%)) by employing the bootstrapping method. The risk is characterized by transforming the risk quotient (RQ), which is the ratio of EC(95%) to PNEC(5%), into a cumulative risk distribution. This article describes a probabilistic basis for the ERA, which is essential from risk management and decision-making viewpoints. Two case studies of underwater oil and gas mixture release, and oil release with no gaseous mixture are used to show the systematic implementation of the methodology, elements of ERA, and the probabilistic method in assessing and characterizing the risk.


Assuntos
Ecossistema , Saúde Ambiental , Combustíveis Fósseis/análise , Poluição da Água , Algoritmos , Modelos Teóricos , Oceanos e Mares , Medição de Risco/métodos
20.
Risk Anal ; 23(6): 1309-21, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14641903

RESUMO

Due to the hydrophobic nature of synthetic based fluids (SBFs), drilling cuttings are not very dispersive in the water column and settle down close to the disposal site. Arsenic and copper are two important toxic heavy metals, among others, found in the drilling waste. In this article, the concentrations of heavy metals are determined using a steady state "aquivalence-based" fate model in a probabilistic mode. Monte Carlo simulations are employed to determine pore water concentrations. A hypothetical case study is used to determine the water quality impacts for two discharge options: 4% and 10% attached SBFs, which correspond to the best available technology option and the current discharge practice in the U.S. offshore. The exposure concentration (CE) is a predicted environmental concentration, which is adjusted for exposure probability and bioavailable fraction of heavy metals. The response of the ecosystem (RE) is defined by developing an empirical distribution function of predicted no-effect concentration. The pollutants' pore water concentrations within the radius of 750 m are estimated and cumulative distributions of risk quotient (RQ=CE/RE) are developed to determine the probability of RQ greater than 1.


Assuntos
Arsênio/análise , Cobre/análise , Poluentes Químicos da Água/análise , Arsênio/toxicidade , Cobre/toxicidade , Ecossistema , Óleos Combustíveis , Indústrias , Biologia Marinha , Método de Monte Carlo , Medição de Risco , Estados Unidos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA