Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Pollut ; 268(Pt B): 115869, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33128930

RESUMO

Phytoremediation coupled with co-cropping is assumed to be good for safety utilization and remediation of heavy metal contaminated farmland, which can ensure farmers' income without increasing health risks for human. In this study, the effects on plant cadmium (Cd) accumulation and health risk of consuming the vegetable plant were compared between monoculture and co-cropping of cauliflower (Brassica oleracea) with two ecotypes of Sedum alfredii in a moderately (0.82 mg kg-1) Cd contaminated greenhouse vegetable field. The results showed that co-cropping with S. alfredii raised Cd concentration in edible part of cauliflower with slightly growth promotion. The health risk of consuming cauliflower to different groups of people have been evaluated by calculating Hazard Quotient (HQ) and all HQ value were less than 1.0, which indicated that eating co-cropped cauliflower would not cause health risks to adults and children. Besides, the Cd concentration of hyperaccumulating ecotype (HE) of S. alfredii was 27.3 mg kg-1 in monoculture and it increased to 51.2 mg kg-1 after co-cropping with cauliflower, suggesting that the co-cropping system promoted HE Cd absorption capacity. Therefore, the "Phytoextraction Coupled with Agro-safe-production" (PCA) model of cauliflower and HE can serve as an alternative sustainable strategy in the Cd moderate polluted greenhouse.


Assuntos
Brassica , Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Criança , Humanos , Raízes de Plantas/química , Medição de Risco , Poluentes do Solo/análise , Verduras
2.
Int J Phytoremediation ; 22(9): 972-985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32524834

RESUMO

Information is needed for comparative assessment and agronomic practices for phytoavoidation in multi-pollutant field. A field study was conducted to explore 97 Brassica pekinensis L. genotypes with permissible limit of contaminants growing in a severely Cd, moderately nitrate and slightly Pb multi-polluted field. Thirteen genotypes, i.e. KGZY, CXQW, CAIB, JINL, JQIN, JFEN, WMQF, XLSH, TAIK, BJXS, JUKA, XYJQ and GQBW, were identified with permissible limit for nitrate, Cd and Pb based on their resistance to heavy metal and nitrate accumulation in leaves when grown in co-contaminated soils. Furthermore, the correlation between essential and toxic elements concentrations in plant of B. pekinensis were inconsistent. Generally speaking, application of increasing Ca, K and S fertilizers in appropriate forms and dosages tended to increase the yield and quality of B. pekinensis cultivated in multi-pollutant field.


Assuntos
Brassica , Poluentes Ambientais , Poluentes do Solo/análise , Biodegradação Ambiental , Cádmio/análise , Genótipo , Chumbo , Solo
3.
J Environ Sci (China) ; 87: 24-38, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791497

RESUMO

Phytoremediation is a valuable technology for mitigating soil contamination in agricultural lands, but phytoremediation without economic revenue is unfeasible for land owners and farmers. The use of crops with high biomass and bioenergy for phytoremediation is a unique strategy to derive supplementary benefits along with remediation activities. Sunflower (Helianthus annuus L.) is a high-biomass crop that can be used for the phytoremediation of polluted lands with additional advantages (biomass and oil). In this study, 40 germplasms of sunflower were screened in field conditions for phytoremediation with the possibility for oil and meal production. The study was carried out to the physiological maturity stage. All studied germplasms mopped up substantial concentrations of Pb, with maximum amounts in shoot > root > seed respectively. The phytoextraction efficiency of the germplasm was assessed in terms of the Transfer factor (TF), Metal removal efficiency (MRE) and Metal extraction ratio (MER). Among all assessed criteria, GP.8585 was found to be most appropriate for restoring moderately Pb-contaminated soil accompanied with providing high biomass and high yield production. The Pb content in the oil of GP.8585 was below the Food safety standard of China, with 59.5% oleic acid and 32.1% linoleic acid. Moreover, amino acid analysis in meal illustrated significant differences among essential and non-essential amino acids. Glutamic acid was found in the highest percentage (22.4%), whereas cysteine in the lowest percentage (1.3%). Therefore, its efficient phytoextraction ability and good quality edible oil and meal production makes GP.8585 the most convenient sunflower germplasm for phytoremediation of moderately Pb-contaminated soil, with fringe benefits to farmers and landowners.


Assuntos
Biodegradação Ambiental , Helianthus/fisiologia , Chumbo , Poluentes do Solo/análise , Agricultura , Animais , Asteraceae , Biomassa , China , Produtos Agrícolas , Poluentes Ambientais , Helianthus/química , Humanos , Metais Pesados , Sementes/química , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA