RESUMO
Toxicity monitoring of environmental pollutants especially petroleum hydrocarbons as priority pollutants is an important environmental issue. This study addresses a rapid, sensitive and cost effective method for the detection of total petroleum hydrocarbons (TPHs) using Aliivibrio fischeri bioluminescence inhibition bioassay. At the first step, the optimum conditions including time, pH and temperature for growth of A. fischeri were determined. Then, two methods were used to evaluate the toxicity of petroleum compounds. In the first method, short-term (15 min) and long-term (16 h) toxicity assays were performed. In the second method luminescence kinetics of A. fischeri was investigated during 24 h. The results demonstrated the most appropriate time for the bacterial growth occurred 16 h after inoculation and optimum temperature and pH were found 25 °C and 7, respectively. Short-term and long-term toxicity did not indicate any toxicity for various concentrations of TPHs (30, 50, 110, 160, 220 mg/L). Considering the luminescence kinetics of A. fischeri the long-term assay was introduced as 6 h. The half maximal effective concentration (EC50) was achieved 1.77 mg/L of TPHs. It is concluded that the luminescence kinetics of A. fischeri can be a valuable approach for assessing toxicity of TPHs in aquatic environments.
Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Petróleo/toxicidade , Poluentes Químicos da Água/toxicidade , Bioensaio/métodos , Poluentes Ambientais/toxicidade , Hidrocarbonetos/toxicidade , Luminescência , Medições LuminescentesRESUMO
In this paper, we investigate the effect of noise and disorder on the efficiency of excitation energy transfer (EET) in a N = 5 sites linear chain with 'static' dipole-dipole couplings. In fact, here, the disordered chain is a toy model for one strand of the selectivity filter backbone in ion channels. It has recently been discussed that the presence of quantum coherence in the selectivity filter is possible and can play a role in mediating ion-conduction and ion-selectivity in the selectivity filter. The question is 'how a quantum coherence can be effective in such structures while the environment of the channel is dephasing (i.e. noisy)?' Basically, we expect that the presence of the noise should have a destructive effect in the quantum transport. In fact, we show that such expectation is valid for ordered chains. However, our results indicate that introducing the dephasing in the disordered chains leads to the weakening of the localization effects, arising from the multiple back-scatterings due to the randomness, and then increases the efficiency of quantum energy transfer. Thus, the presence of noise is crucial for the enhancement of EET efficiency in disordered chains. We also show that the contribution of both classical and quantum mechanical effects are required to improve the speed of energy transfer along the chain. Our analysis may help for better understanding of fast and efficient functioning of the selectivity filters in ion channels.