RESUMO
There is evidence that palmatine (PA), an alkaloid isolated from the Guatteria friesiana plant, has some important biological activities, including anti-inflammatory and antidepressant effects. In this study, the antioxidant and anti-acetylcholinesterase (AChE) effects of PA were assessed. The antioxidant capacity was evaluated in vitro and in vivo through 7 distinct assays, and the anti-AChE activity was determined in vitro. The standards, trolox and ascorbic acid were used for the in vitro antioxidant test, while hydrogen peroxide was selected as a stressor for the Saccharomyces cerevisiae test. Additionally, PA was also combined with trolox and ascorbic acid to determine the likelihood of synergistic effects occurrence to what concerns to antioxidant potential. PA exhibited a potent and concentration-dependent antioxidant potential, although a stronger antioxidant activity was stated using the PA + trolox combination. PA was also found to inhibit AChE activity when compared to the negative control. Thus, PA may be viewed as a promissory phytotherapeutic agent to manage oxidative stress-mediated neurological diseases, especially the Alzheimer's and Parkinson's diseases.
Assuntos
Acetilcolinesterase/metabolismo , Antioxidantes/farmacologia , Alcaloides de Berberina/farmacologia , Inibidores da Colinesterase/farmacologia , Peróxido de Hidrogênio/toxicidade , Saccharomyces cerevisiae/efeitos dos fármacosRESUMO
Phytol (PHY) is an acyclic natural diterpene alcohol and a chlorophyll constituent that exhibits several pharmacological effects, such as anticancer, antioxidant, and antimicrobial. Here, we aimed to assess the PHY anti-inflammatory effect in vitro and in vivo, and to deepen knowledge on the possible mechanism of action. For this purpose, egg albumin (in vitro) test was performed by using acetyl salicylic acid (ASA) as a standard nonsteroidal anti-inflammatory drugs (NSAID). For in vivo test, male Wistar albino rats were treated (intraperitoneally) with 100 mg/kg of PHY and/or standard NSAIDs ASA (100 mg/kg) and diclofenac sodium (Diclo-Na, 10 mg/kg) to evaluate the combined effect of PHY in formalin-induced paw edema model. Furthermore, an in silico (CADD) study was accomplished to assess the effect of PHY against cyclooxygenase (COX)-1 and 2 enzymes, nuclear factor kappa B (NF-κB), and interleukin-1ß (IL-1ß). Results revealed that PHY exhibits dose-dependent anti-inflammatory effect using the egg albumin method. PHY (100 mg/kg) co-treated with ASA and/or Diclo-Na reduced paw edema better than PHY alone or NSAIDs individual groups. Computational study showed that PHY efficiently interacts with COX-1 and 2, NF-κB, and IL-1ß. In conclusion, PHY exhibits anti-inflammatory activity, possibly via COX-1 and 2, NF-κB, and IL-1ß dependent pathways.
Assuntos
Anti-Inflamatórios/farmacologia , Fitol/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Modelos Animais de Doenças , Edema/tratamento farmacológico , Masculino , Simulação de Acoplamento Molecular , Ovalbumina/metabolismo , Ratos WistarRESUMO
Pullulan is an important polysaccharide with several potential applications in food science, pharmaceutical and cosmetic industries, but high costs of pullulan production are the main limitation for commercial utilization. Therefore, a cost-effective process for pullulan production was developed using fig syrup as an exclusive nutrient source. In particular, the feasibility of using low quality fig syrup as a supplemental substrate for pullulan gum production by Aureobasidium pullulans was investigated. Fermentation was carried out over a range of fig syrup and sucrose degrees Brix (5-15%). Maximum pullulan gum production was observed after 96h using 12.5% fig syrup, yielding approximately14.06 g/L. This value of pullulan production (14.06 g/L) was higher than the amount of pullulan produced using sucrose as substrate (5.01 g/L). In conclusion, fig syrup was an effective substrate for pullulan production by Aureobasidium pullulans, and, therefore, this byproduct deserves attention for the cost-effective and environmentally friendly pullulan production.
Assuntos
Ficus/química , Aditivos Alimentares/química , Glucanos/química , Polissacarídeos/química , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Carbono/química , Análise Custo-Benefício , Fermentação , Aditivos Alimentares/metabolismo , Glucanos/economia , Humanos , Nitrogênio/químicaRESUMO
With the appearance of new disorders along with inability of some conventional therapies for the treatment of diseases without any side effects, the discovery of safe and efficient therapeutic agents is of utmost importance in the medical area. In this context, medicinal plants as promising therapeutic candidates can provide a reliable and efficient profile. Since free radicals are at the center of various disorder pathways, reducing their production or complete removal of these chemical species could be advantageous for prevention and treatment of many diseases. In this experiment, free radical scavenging and antioxidant activities of Veronica persica Poir., a known medicinal plant, were evaluated using in vitro and in vivo assays. Chemical characterization results showed a high phenolic content in the V. persica methanol extract. In addition, in vitro assays including DPPH radical-scavenging assay, nitric oxide-scavenging activity assay, hydrogen peroxide scavenging test and bleomycin-dependent DNA damage test revealed significant antioxidant power and radical scavenging capacity of this plant. In accordance, in vivo experiments showed inhibitory effects of the methanol extract on lipid peroxidation, a main cause of cell damage. Our findings revealed the promising potential of this plant in reducing free radicals through different pathways. Moreover, our data suggested a correlation between the high phenolic content of the V. persica extract and its free radical scavenging and antioxidant activities.
Assuntos
Antioxidantes/química , Sequestradores de Radicais Livres/química , Extratos Vegetais/química , Veronica/química , Dano ao DNA/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Fenóis/química , Extratos Vegetais/uso terapêutico , Plantas Medicinais/químicaRESUMO
Organ transplantation is a new issue in medical science. It is an important achievement and a sign of the progression and ability of medical centers around the world. Governments, populations, the medical community and people involved in culture, art, and media all have a decisive role in the culture of organ donation, which is the only way to guarantee that the healthy organs of a brain-dead person can continue to work and save the lives of people in need of organ transplantation. The brain death phenomenon and its possible application in organ transplantation, while offering new hope for the salvation of a number of patients, has led to many ethical, cultural, and legal issues. Ethical issues in organ transplantation are very complicated due to many social factors such as religion, culture, and traditions of the affected communities. The ethical and legal points of removing organs from the body of a living or cadaveric source, the definition of brain death, the moral and legal conditions of the donor and the recipient, and the financial relationship between them and many others, are all critical issues in organ transplantation. While there may be no available explicit solution to these issues, they should be rigorously considered by the experts. Efforts to systematically eliminate barriers and solve problems in organ transplantation, can not only reduce the costs of maintaining brain-dead patients and encourage patients that need organ transplantation but can also prevent immoral and illegal activities. In this paper, we have reviewed the most important and current challenges in organ transplantation with a view to the ethical considerations, and we have suggested some strategies to extend it in Iran.