Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 20(8): 36-46, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31343826

RESUMO

PURPOSE: RayStation treatment planning system employs pencil beam (PB) and Monte Carlo (MC) algorithms for proton dose calculations. The purpose of this study is to evaluate the radiobiological and dosimetric impact of RayStation PB and MC algorithms on the intensity-modulated proton therapy (IMPT) breast plans. METHODS: The current study included ten breast cancer patients, and each patient was treated with 1-2 proton beams to the whole breast/chestwall (CW) and regional lymph nodes in 28 fractions for a total dose of 50.4 Gy relative biological effectiveness (RBE). A total clinical target volume (CTV_Total) was generated by combining individual CTVs: AxI, AxII, AxIII, CW, IMN, and SCVN. All beams in the study were treated with a range shifter (7.5 cm water equivalent thickness). For each patient, three sets of plans were generated: (a) PB optimization followed by PB dose calculation (PB-PB), (b) PB optimization followed by MC dose calculation (PB-MC), and (c) MC optimization followed by MC dose calculation (MC-MC). For a given patient, each plan was robustly optimized on the CTVs with same parameters and objectives. Treatment plans were evaluated using dosimetric and radiobiological indices (equivalent uniform dose (EUD), tumor control probability (TCP), and normal tissue complication probability (NTCP)). RESULTS: The results are averaged over ten breast cancer patients. In comparison to PB-PB plans, PB-MC plans showed a reduction in CTV target dose by 5.3% for D99% and 4.1% for D95% , as well as a reduction in TCP by 1.5-2.1%. Similarly, PB overestimated the EUD of target volumes by 1.8─3.2 Gy(RBE). In contrast, MC-MC plans achieved similar dosimetric and radiobiological (EUD and TCP) results as the ones in PB-PB plans. A selection of one dose calculation algorithm over another did not produce any noticeable differences in the NTCP of the heart, lung, and skin. CONCLUSION: If MC is more accurate than PB as reported in the literature, dosimetric and radiobiological results from the current study suggest that PB overestimates the target dose, EUD, and TCP for IMPT breast cancer treatment. The overestimation of dosimetric and radiobiological results of the target volume by PB needs to be further interpreted in terms of clinical outcome.


Assuntos
Algoritmos , Neoplasias da Mama/radioterapia , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Prognóstico , Dosagem Radioterapêutica
2.
Rep Pract Oncol Radiother ; 20(3): 188-97, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25949222

RESUMO

BACKGROUND AND AIM: The clinical use of imaging system in image guided radiotherapy (IGRT) necessitates performing periodic quality assurance of the system to be confident in applying corrections for patient set-up errors. We aim to develop and implement a quality assurance (QA) programme for megavoltage (MV) based image guidance system and assess its long term performance for a period of 3 years. MATERIALS AND METHODS: Periodic QA tests were performed for the MV planar and cone beam computed tomography (CBCT) imaging system to assess the system safety, mechanical and geometrical accuracy, image quality and dose. The tests were performed using the equipment supplied by the manufacturer along with the image guidance system and using simple methods developed in-house. The test results were compared with expected or baseline values established during commissioning. RESULTS: The safety system was found to be functional. The results of mechanical and geometrical tests were in good agreement with the expected results. The system mechanical positioning was stable and reproducible within ±2 mm accuracy. The image quality and the imaging dose of the planar and CBCT imaging were found to agree with the baseline values and the manufacturer specifications. DISCUSSION: Throughout the three-year period, all the QA tests were within the specification. The mechanical and geometrical tests are most crucial as they directly affect the patient positioning accuracy. CONCLUSION: We conclude that the MV image guidance system is efficient to perform IGRT and insist to perform periodic QA tests and calibration for the system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA