Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Eur J Heart Fail ; 26(1): 18-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38131233

RESUMO

Right-sided heart failure and tricuspid regurgitation are common and strongly associated with poor quality of life and an increased risk of heart failure hospitalizations and death. While medical therapy for right-sided heart failure is limited, treatment options for tricuspid regurgitation include surgery and, based on recent developments, several transcatheter interventions. However, the patients who might benefit from tricuspid valve interventions are yet unknown, as is the ideal time for these treatments given the paucity of clinical evidence. In this context, it is crucial to elucidate aetiology and pathophysiological mechanisms leading to right-sided heart failure and tricuspid regurgitation in order to recognize when tricuspid regurgitation is a mere bystander and when it can cause or contribute to heart failure progression. Notably, early identification of right heart failure and tricuspid regurgitation may be crucial and optimal management requires knowledge about the different mechanisms and causes, clinical course and presentation, as well as possible treatment options. The aim of this clinical consensus statement is to summarize current knowledge about epidemiology, pathophysiology and treatment of tricuspid regurgitation in right-sided heart failure providing practical suggestions for patient identification and management.


Assuntos
Insuficiência Cardíaca , Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Tricúspide , Humanos , Insuficiência da Valva Tricúspide/diagnóstico , Insuficiência da Valva Tricúspide/epidemiologia , Insuficiência da Valva Tricúspide/terapia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/terapia , Qualidade de Vida , Valva Tricúspide/cirurgia , Resultado do Tratamento
2.
Diagnostics (Basel) ; 13(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37510158

RESUMO

Aortic stenosis (AS) is a valvular heart disease that significantly contributes to cardiovascular morbidity and mortality worldwide. The condition is characterized by calcification and thickening of the aortic valve leaflets, resulting in a narrowed orifice and increased pressure gradient across the valve. AS typically progresses from a subclinical phase known as aortic sclerosis, where valve calcification occurs without a transvalvular gradient, to a more advanced stage marked by a triad of symptoms: heart failure, syncope, and angina. Echocardiography plays a crucial role in the diagnosis and evaluation of AS, serving as the primary non-invasive imaging modality. However, to minimize misdiagnoses, it is crucial to adhere to a standardized protocol for acquiring echocardiographic images. This is because, despite continuous advances in echocardiographic technology, diagnostic errors still occur during the evaluation of AS, particularly in classifying its severity and hemodynamic characteristics. This review focuses on providing guidance for the imager during the echocardiographic assessment of AS. Firstly, the review will report on how the echo machine should be set to improve image quality and reduce noise and artifacts. Thereafter, the review will report specific emphasis on accurate measurements of left ventricular outflow tract diameter, aortic valve morphology and movement, as well as aortic and left ventricular outflow tract velocities. By considering these key factors, clinicians can ensure consistency and accuracy in the evaluation of AS using echocardiography.

3.
Diagnostics (Basel) ; 13(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37370999

RESUMO

Aortic stenosis (AS) can often coexist with other valvular diseases or be combined with aortic regurgitation (AR), leading to unique pathophysiological conditions. The combination of affected valves can vary widely, resulting in a lack of standardized diagnostic or therapeutic approaches. Echocardiography is crucial in assessing patients with valvular heart disease (VHD), but careful consideration of the hemodynamic interactions between combined valvular defects is necessary. This is important as it may affect the reliability of commonly used echocardiographic parameters, making the diagnosis challenging. Therefore, a multimodality imaging approach, including computed tomography or cardiac magnetic resonance, is often not just beneficial but crucial. It represents the future of diagnostics in this intricate field due to its unprecedented capacity to quantify and comprehend valvular pathology. The absence of definitive data and guidelines for the therapeutic management of AS in the context of multiple valve lesions makes this condition particularly challenging. As a result, an individualized, case-by-case approach is necessary, guided primarily by the recommendations for the predominant valve lesion. This review aims to summarize the pathophysiology of AS in the context of multiple and mixed valve disease, with a focus on the hemodynamic implications, diagnostic challenges, and therapeutic options.

4.
Front Public Health ; 5: 344, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326919

RESUMO

Magnetic resonance imaging (MRI) has evolved rapidly over the past few decades as one of the most flexible tools in medical research and diagnostic imaging. MRI facilities are important sources of multiple exposure to electromagnetic fields for both patients and health-care staff, due to the presence of electromagnetic fields of multiple frequency ranges, different temporal variations, and field strengths. Due to the increasing use and technological advancements of MRI systems, clearer insights into exposure assessment and a better understanding of possible harmful effects due to long-term exposures are highly needed. In the present exploratory study, exposure assessment and biomonitoring of MRI workers at the Radio-diagnostics Unit of the National Cancer Institute of Naples "Pascale Foundation" (Naples, Italy) have been carried out. In particular, exposure to the MRI static magnetic field (SMF) has been evaluated by means of personal monitoring, while an application tool has been developed to provide an estimate of motion-induced, time-varying electric fields. Measurement results have highlighted a high day-to-day and worker-to-worker variability of the exposure to the SMF, which strongly depends on the characteristics of the environment and on personal behaviors, and the developed application tool can be adopted as an easy-to-use tool for rapid and qualitative evaluation of motion-induced, time-varying electric field exposure. Regarding biomonitoring, the 24 workers of the Radio-diagnostics Unit were enrolled to evaluate both spontaneous and mitomycin C-induced chromosomal fragility in human peripheral blood lymphocytes, by means of the cytokinesis-block micronucleus assay. The study subjects were 12 MRI workers, representative of different professional categories, as the exposed group, and 12 workers with no MRI exposure history, as the reference group. The results show a high worker-to-worker variability for both field exposure assessment and biomonitoring, as well as several critical issues and practicalities to be faced with in this type of investigations. The procedures for risk assessment and biomonitoring proposed here can be used to inform future research in this field, which will require a refinement of exposure assessment methods and an enlargement of the number of subjects enrolled in the biomonitoring study to gain robust statistics and reliable results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA