Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Proteomics ; 225: 103882, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32598980

RESUMO

The Duvernoy's gland secretory proteome of the false coral snake Rhinobothryum bovallii (Costa Rica), unveiled applying bottom-up venomics, comprises a handful of toxins belonging to only three protein families, three-finger toxin (3FTx), cysteine-rich secretory protein (CRISP), and snake venom metalloprotease (PIII-SVMP). Except for small differences in the relative abundance of the PIII-SVMPs, which may be due to individual variability, no evidence of geographic variability or ontogenetic changes was found among the venom proteomes of the juvenile and adult R. bovallii snakes sampled. Major monomeric (86.5%mol) and minor dimeric (2.8%mol) 3FTxs dominate the toxin arsenal of the Costa Rican false coral snake. The remaining 10.7% of the venom proteome comprises CRISP (8.2%) and PIII-SVMP (2.4%) molecules. In vivo lethality assays showed that R. bovallii produces venom that is non-toxic towards mammalian prey, and which exerts a different toxic effect on domestic chicken chicks and baby green iguana. Toxicovenomic analysis of R. bovallii venom in the iguana model identified two 3FTx RP-HPLC fractions that faithfully mimicked the irreversible immobilizing effect of the whole venom. BIOLOGICAL SIGNIFICANCE: With more than 2200 species in family Colubridae (sensu lato), rear-fanged snakes comprise approximately two-thirds of the extant species of advanced snakes. Snakebites from venomous snakes that are of medical concern are predominantly from front-fanged snakes of families Viperidae and Elapidae. On the other hand, rear-fanged snakes have been conventionally considered non-venomous, and thus their venoms have remained a largely untapped area of venomics. However, increasing documentation of life-threadening, even fatal, envenomings from rear-fanged snakes has sparked interest in their venoms. Appying bottom-up venomics we have revealed that the Duvernoy's gland secretory proteome of R. bovallii comprises a handful of toxins belonging to only three protein families, with slow-acting three-finger toxins (3FTx) that are non-toxic towards mammalian prey and show preference towards diapsid taxa representing the dominant structural and functional proteins. Our work documents for the first time 3FTxs exerting different effect in an avian model than in a reptile model. Besides, the 3FTx fractions that faithfully mimicked the irreversible iguana-immobilizing effect of the whole venom were identified through toxicovenomic analysis of R. bovallii venom on Iguana iguana. Our work underscores the importance of using biologically-relevant animal toxicity models for investigating the biological roles of venoms in an evolutionary-ecological context.


Assuntos
Colubridae , Cobras Corais , Animais , Galinhas , Venenos Elapídicos , Elapidae , Modelos Animais , Venenos de Serpentes
2.
J Proteomics ; 121: 28-43, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25819372

RESUMO

Here we describe and compare the venomic and antivenomic characteristics of both neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) venoms. Although both neonate and adult venoms contain unique components, similarities among protein family content were seen. Both neonate and adult venoms consisted of myotoxin, bradykinin-potentiating peptide (BPP), phospholipase A2 (PLA2), Zn(2+)-dependent metalloproteinase (SVMP), serine proteinase, L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRISP) and disintegrin families. Quantitative differences, however, were observed, with venoms of adults containing significantly higher concentrations of the non-enzymatic toxic compounds and venoms of neonates containing higher concentrations of pre-digestive enzymatic proteins such as SVMPs. To assess the relevance of this venom variation in the context of snakebite and snakebite treatment, we tested the efficacy of the common antivenom CroFab® for recognition of both adult and neonate venoms in vitro. This comparison revealed that many of the major protein families (SVMPs, CRISP, PLA2, serine proteases, and LAAO) in both neonate and adult venoms were immunodepleted by the antivenom, whereas myotoxins, one of the major toxic components of C. v. viridis venom, in addition to many of the small peptides, were not efficiently depleted by CroFab®. These results therefore provide a comprehensive catalog of the venom compounds present in C. v. viridis venom and new molecular insight into the potential efficacy of CroFab® against human envenomations by one of the most widely distributed rattlesnake species in North America. BIOLOGICAL SIGNIFICANCE: Comparative proteomic analysis of venoms of neonate and adult Prairie Rattlesnake (Crotalus viridis viridis) from a discrete population in Colorado revealed a novel pattern of ontogenetic shifts in toxin composition for viperid snakes. The observed stage-dependent decrease of the relative content of disintegrins, catalytically active D49-PLA2s, L-amino acid oxidase, and SVMPs, and the concomitant increase of the relative abundance of paralytic small basic myotoxins and ohanin-like toxin, and hemostasis-disrupting serine proteinases, may represent an age-dependent strategy for securing prey and avoiding injury as the snake switches from small ectothermic prey and newborn rodents to larger endothermic prey. Such age-dependent shifts in venom composition may be relevant for antivenom efficacy and treatment of snakebite. However, applying a second-generation antivenomics approach, we show that CroFab®, developed against venom of three Crotalus and one Agkistrodon species, efficiently immunodepleted many, but not all, of the major compounds present in neonate and adult C. v. viridis venoms.


Assuntos
Antivenenos/química , Crotalus/fisiologia , Fragmentos Fab das Imunoglobulinas/química , Venenos de Serpentes/química , Animais , Cromatografia Líquida de Alta Pressão , Colorado , Feminino , Geografia , L-Aminoácido Oxidase/química , Masculino , Peptídeos/química , Fosfolipases A2/química , Proteômica , Zinco/química
3.
Toxins (Basel) ; 6(12): 3388-405, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25517863

RESUMO

Snakebite envenoming represents a neglected tropical disease that has a heavy public health impact worldwide, mostly affecting poor people involved in agricultural activities in Africa, Asia, Latin America and Oceania. A key issue that complicates the treatment of snakebite envenomings is the poor availability of the only validated treatment for this disease, antivenoms. Antivenoms can be an efficacious treatment for snakebite envenoming, provided they are safe, effective, affordable, accessible and administered appropriately. The shortage of antivenoms in various regions, particularly in Sub-Saharan Africa and some parts of Asia, can be significantly alleviated by optimizing the use of current antivenoms and by the generation of novel polyspecific antivenoms having a wide spectrum of efficacy. Complementing preclinical testing of antivenom efficacy using in vivo and in vitro functional neutralization assays, developments in venomics and antivenomics are likely to revolutionize the design and preclinical assessment of antivenoms by being able to test new antivenom preparations and to predict their paraspecific neutralization to the level of species-specific toxins.


Assuntos
Antivenenos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , África Subsaariana , Animais , Ásia , Proteômica , Mordeduras de Serpentes/terapia , Venenos de Serpentes/química , Serpentes , Especificidade da Espécie
4.
J Proteomics ; 89: 112-23, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23747394

RESUMO

We report the proteomic analysis of the Atlantic bushmaster, Lachesis muta rhombeata, from Brazil. Along with previous characterization of the venom proteomes of L. stenophrys (Costa Rica), L. melanocephala (Costa Rica), L. acrochorda (Colombia), and L. muta muta (Bolivia), the present study provides the first overview of the composition and distribution of venom proteins across this wide-ranging genus, and highlights the remarkable similar compositional and pharmacological profiles across Lachesis venoms. The paraspecificity of two antivenoms, produced at Instituto Vital Brazil (Brazil) and Instituto Clodomiro Picado (Costa Rica) using different conspecific taxa in the immunization mixtures, was assessed using genus-wide comparative antivenomics. This study confirms that the proteomic similarity among Lachesis sp. venoms is mirrored in their high immunological conservation across the genus. The clinical and therapeutic consequences of genus-wide venomics and antivenomics investigations of Lachesis venoms are discussed. BIOLOGICAL SIGNIFICANCE: The proteomics characterization of L. m. rhombeata venom completes the overview of Lachesis venom proteomes and confirms the remarkable toxin profile conservation across the five clades of this wide-ranging genus. Genus-wide antivenomics showed that two antivenoms, produced against L. stenophrys or L. m. rhombeata, exhibit paraspecificity towards all other congeneric venoms. Our venomics study shows that, despite the broad geographic distribution of the genus, monospecific antivenoms may achieve clinical coverage for any Lachesis sp. envenoming.


Assuntos
Antivenenos , Venenos de Crotalídeos , Proteoma , Viperidae , Animais , Antivenenos/química , Antivenenos/genética , Antivenenos/imunologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/imunologia , Cavalos , Proteoma/química , Proteoma/genética , Proteoma/imunologia , Especificidade da Espécie , Viperidae/genética , Viperidae/imunologia
5.
Toxicon ; 64: 60-9, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23313380

RESUMO

A polyspecific antivenom is used in Central America for the treatment of envenomings by viperid snakes. This antivenom is generated in horses hyperimmunized with a mixture of venoms from Bothrops asper, Crotalus simus and Lachesis stenophrys. The present study analyzed the ability of this antivenom to neutralize the venoms of three Central American viperid species of the 'Porthidium group', i.e. Porthidium nasutum, Porthidium ophryomegas and Cerrophidion sasai, formerly classified as Cerrophidion godmani. In addition, the immunorecognition of the components of these venoms was assessed by immunoaffinity antivenomics. The antivenom proved effective in neutralizing the lethal, hemorrhagic, myotoxic, phospholipase A(2) (PLA(2)) and proteinase activities of the three venoms, albeit exhibiting quantitative differences in the values of the Median Effective Doses (ED(50)). Excepting for certain low molecular mass bands corresponding to disintegrins, and some PLA(2)s and PI-metalloproteinases, Western blotting and immunoaffinity chromatography revealed immunorecognition of most Porthidium and Cerrophidion venom proteins. In agreement with in vivo neutralization assays, immobilized antivenom IgGs showed higher immunocapturing activity of toxins from both Porthidium taxa than from C. sasai. Overall our results demonstrate a significant paraspecific protection of the Costa Rican polyspecific antivenom against the three venoms sampled. They also stress the need to search for novel ways to enhance the immune response of horses against several weakly immunogenic venom components.


Assuntos
Antivenenos/uso terapêutico , Venenos de Crotalídeos/toxicidade , Viperidae/metabolismo , Animais , Antivenenos/análise , Antivenenos/imunologia , Cromatografia de Afinidade/métodos , Venenos de Crotalídeos/química , Avaliação Pré-Clínica de Medicamentos , Hemorragia/induzido quimicamente , Hemorragia/patologia , Hemorragia/prevenção & controle , Cavalos/imunologia , Injeções Intraperitoneais , Dose Letal Mediana , Longevidade/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/patologia , Doenças Musculares/prevenção & controle , Testes de Neutralização , Inibidores de Fosfolipase A2 , Proteômica/métodos , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/imunologia , Viperidae/imunologia
6.
J Proteomics ; 75(8): 2431-41, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22387317

RESUMO

Proteomic analysis of the venom of the medically relevant snake Macrovipera mauritanica from Morocco revealed a complex proteome composed of at least 45 toxins from 9 protein families targeting the hemostatic system of the prey or victim. The toxin profile of Moroccan M. mauritanica displays great similarity, but also worth noting departures, with the previously reported venom proteome of M. lebetina from Tunisia. Despite fine compositional differences between these Macrovipera taxa, their overall venom phenotypes explain the clinical picture observed in M. mauritanica and M. lebetina envenomings. However, M. mauritanica venom also contains significant amounts of orphan molecules whose presence in the venom seems to be difficult to rationalize in the context of a predator-prey arms race. The paraspecific immunoreactivity of an experimental monospecific (M. mauritanica) antivenom and a commercial bivalent antivenom, anti-C. cerastes and anti-M. lebetina, against the venoms of Moroccan M. mauritanica and Tunisian M. lebetina, was also investigated through an affinity chromatography-based antivenomics approach. Both antivenoms very efficiently immunodepleted homologous venom toxins and displayed a high degree of paraspecificity, suggesting the clinical utility of the two antivenoms for treating bites of both M. mauritanica or M. lebetina.


Assuntos
Anticorpos Monoclonais/imunologia , Antivenenos/imunologia , Venenos de Crotalídeos/análise , Imunoprecipitação/métodos , Serpentes/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , Especificidade de Anticorpos , Antivenenos/metabolismo , Comércio , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/metabolismo , Drogas em Investigação , Geografia , Oriente Médio , Marrocos , Proteoma/análise , Proteoma/imunologia , Proteoma/metabolismo , Tunísia
7.
J Proteome Res ; 10(3): 1266-80, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21171584

RESUMO

Venomic analysis of the venoms of Naja nigricollis, N. katiensis, N. nubiae, N. mossambica, and N. pallida revealed similar compositional trends. The high content of cytotoxins and PLA(2)s may account for the extensive tissue necrosis characteristic of the envenomings by these species. The high abundance of a type I α-neurotoxin in N. nubiae may be responsible for the high lethal toxicity of this venom (in rodents). The ability of EchiTAb-Plus-ICP antivenom to immunodeplete and neutralize the venoms of African spitting cobras was assessed by antivenomics and neutralization tests. It partially immunodepleted 3FTx and PLA(2)s and completely immunodepleted SVMPs and CRISPs in all venoms. The antivenom neutralized the dermonecrotic and PLA(2) activities of all African Naja venoms, whereas lethality was eliminated in the venoms of N. nigricollis, N. mossambica, and N. pallida but not in those of N. nubiae and N. katiensis. The lack of neutralization of lethality of N. nubiae venom may be of medical relevance only in relatively populous areas of the Saharan region. The impaired activity of EchiTAb-Plus-ICP against N. katiensis may not represent a major concern. This species is sympatric with N. nigricollis in many regions of Africa, although very few bites have been attributed to it.


Assuntos
Antivenenos/química , Antivenenos/imunologia , Venenos Elapídicos/química , Elapidae , Testes de Neutralização/métodos , África , Sequência de Aminoácidos , Animais , Antivenenos/uso terapêutico , Criança , Cromatografia Líquida de Alta Pressão/métodos , Elapidae/classificação , Humanos , Espectrometria de Massas/métodos , Metaloproteases/análise , Metaloproteases/genética , Camundongos , Dados de Sequência Molecular , Filogenia , Proteínas/análise , Proteínas/genética , Proteoma/análise , Mordeduras de Serpentes/tratamento farmacológico
8.
Am J Trop Med Hyg ; 82(6): 1194-201, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20519622

RESUMO

The immunoreactivity of EchiTAb-Plus-ICP, an antivenom developed for the treatment of snakebite envenoming in sub-Saharan Africa, to venoms of seven Echis and Bitis species, was assessed by "antivenomics." This proteomic approach is based on the ability of an antivenom to immunodeplete homologous or heterologous venom proteins. Our results show an extensive cross-reactivity of this antivenom against all Echis and Bitis venoms studied, as revealed by the complete immunodepletion of the majority of venom components, including metalloproteinases, serine proteinases, C-type lectin-like proteins, some phospholipases A(2) and L-amino acid oxidase. However, some phospholipases A(2), disintegrins and proteinase inhibitors were immunodepleted to only a partial extent. These results support the hypothesis that immunizing horses with a mixture of the venoms of Echis ocellatus, Bitis arietans, and Naja nigricollis generates antibodies capable of recognizing the majority of components of medically-relevant homologous and heterologous viperid venoms of the genera Bitis and Echis from sub-Saharan Africa.


Assuntos
Antivenenos/imunologia , Mordeduras de Serpentes/tratamento farmacológico , Viperidae/fisiologia , África Subsaariana , Animais , Humanos , Imunoprecipitação , Venenos de Víboras/imunologia
9.
J Proteomics ; 73(9): 1758-76, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20542151

RESUMO

We report the comparative proteomic and antivenomic characterization of the venoms of subspecies cascavella and collilineatus of the Brazilian tropical rattlesnake Crotalus durissus. The venom proteomes of C. d. collilineatus and C. d. cascavella comprise proteins in the range of 4-115 kDa belonging to 9 and 8 toxin families, respectively. Collilineatus and cascavella venoms contain 20-25 main toxins belonging to the following protein families: disintegrin, PLA(2), serine proteinase, cysteine-rich secretory protein (CRISP), vascular endothelial growth factor-like (VEGF), L-amino acid oxidase, C-type lectin-like, and snake venom metalloproteinase (SVMP). As judged by reverse-phase HPLC and mass spectrometry, cascavella and collilineatus share about 90% of their venom proteome. However, the relative occurrence of the toxin families departs among the two C. durissus subspecies venoms. The most notable difference is the presence of the myotoxin crotamine in some C. d. collilineatus specimens (averaging 20.8% of the total proteins of pooled venom), which is absent in the venom of C. d. cascavella. On the other hand, the neurotoxic PLA(2) crotoxin represents the most abundant protein in both C. durissus venoms, comprising 67.4% of the toxin proteome in C. d. collilineatus and 72.5% in C. d. cascavella. Myotoxic PLA(2)s are also present in the two venoms albeit in different relative concentrations (18.1% in C. d. cascavella vs. 4.6% in C. d. collilineatus). The venom composition accounts for the clinical manifestations caused by C. durissus envenomations: systemic neurotoxicity and myalgic symptoms and coagulation disturbances, frequently accompanied by myoglobinuria and acute renal failure. The overall compositions of C. d. subspecies cascavella and collilineatus venoms closely resemble that of C. d. terrificus, supporting the view that these taxa can be considered geographical variations of the same species. Pooled venom from adult C.d. cascavella and neonate C.d. terrificus lack crotamine, whereas this skeletal muscle cell membrane depolarizing inducing myotoxin accounts for approximately 20% of the total toxins of venom pooled from C.d. collilineatus and C.d. terrificus from Southern Brazil. The possible relevance of the observed venom variability among the tropical rattlesnake subspecies was assessed by antivenomics using anti-crotalic antivenoms produced at Instituto Butantan and Instituto Vital Brazil. The results revealed that both antivenoms exhibit impaired immunoreactivity towards crotamine and display restricted ( approximately 60%) recognition of PLA(2) molecules (crotoxin and D49-myotoxins) from C. d. cascavella and C. d. terrificus venoms. This poor reactivity of the antivenoms may be due to a combination of factors: on the one hand, an inappropriate choice of the mixture of venoms for immunization and, on the other hand, the documented low immunogenicity of PLA(2) molecules. C. durissus causes most of the lethal snakebite accidents in Brazil. The implication of the geographic variation of venom composition for the treatment of bites by different C. durissus subspecies populations is discussed.


Assuntos
Antivenenos/imunologia , Venenos de Crotalídeos/química , Crotalus/genética , Proteômica , Mordeduras de Serpentes/terapia , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Venenos de Crotalídeos/toxicidade , Humanos , Coelhos , Mordeduras de Serpentes/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA