Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 158(24)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37352421

RESUMO

Dimer interaction energies have been well studied in computational chemistry, but they can offer an incomplete understanding of molecular binding depending on the system. In the current study, we present a dataset of focal-point coupled-cluster interaction and deformation energies (summing to binding energies, De) of 28 organic molecular dimers. We use these highly accurate energies to evaluate ten density functional approximations for their accuracy. The best performing method (with a double-ζ basis set), B97M-D3BJ, is then used to calculate the binding energies of 104 organic dimers, and we analyze the influence of the nature and strength of interaction on deformation energies. Deformation energies can be as large as 50% of the dimer interaction energy, especially when hydrogen bonding is present. In most cases, two or more hydrogen bonds present in a dimer correspond to an interaction energy of -10 to -25 kcal mol-1, allowing a deformation energy above 1 kcal mol-1 (and up to 9.5 kcal mol-1). A lack of hydrogen bonding usually restricts the deformation energy to below 1 kcal mol-1 due to the weaker interaction energy.


Assuntos
Termodinâmica , Fenômenos Físicos , Ligação de Hidrogênio
2.
J Chem Phys ; 158(5): 054112, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754814

RESUMO

Using the many-body expansion to predict crystal lattice energies (CLEs), a pleasantly parallel process, allows for flexibility in the choice of theoretical methods. Benchmark-level two-body contributions to CLEs of 23 molecular crystals have been computed using interaction energies of dimers with minimum inter-monomer separations (i.e., closest contact distances) up to 30 Å. In a search for ways to reduce the computational expense of calculating accurate CLEs, we have computed these two-body contributions with 15 different quantum chemical levels of theory and compared these energies to those computed with coupled-cluster in the complete basis set (CBS) limit. Interaction energies of the more distant dimers are easier to compute accurately and several of the methods tested are suitable as replacements for coupled-cluster through perturbative triples for all but the closest dimers. For our dataset, sub-kJ mol-1 accuracy can be obtained when calculating two-body interaction energies of dimers with separations shorter than 4 Å with coupled-cluster with single, double, and perturbative triple excitations/CBS and dimers with separations longer than 4 Å with MP2.5/aug-cc-pVDZ, among other schemes, reducing the number of dimers to be computed with coupled-cluster by as much as 98%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA