Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mult Scler ; 30(1): 25-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38088067

RESUMO

BACKGROUND: The central vein sign (CVS) is a proposed magnetic resonance imaging (MRI) biomarker for multiple sclerosis (MS); the optimal method for abbreviated CVS scoring is not yet established. OBJECTIVE: The aim of this study was to evaluate the performance of a simplified approach to CVS assessment in a multicenter study of patients being evaluated for suspected MS. METHODS: Adults referred for possible MS to 10 sites were recruited. A post-Gd 3D T2*-weighted MRI sequence (FLAIR*) was obtained in each subject. Trained raters at each site identified up to six CVS-positive lesions per FLAIR* scan. Diagnostic performance of CVS was evaluated for a diagnosis of MS which had been confirmed using the 2017 McDonald criteria at thresholds including three positive lesions (Select-3*) and six positive lesions (Select-6*). Inter-rater reliability assessments were performed. RESULTS: Overall, 78 participants were analyzed; 37 (47%) were diagnosed with MS, and 41 (53%) were not. The mean age of participants was 45 (range: 19-64) years, and most were female (n = 55, 71%). The area under the receiver operating characteristic curve (AUROC) for the simplified counting method was 0.83 (95% CI: 0.73-0.93). Select-3* and Select-6* had sensitivity of 81% and 65% and specificity of 68% and 98%, respectively. Inter-rater agreement was 78% for Select-3* and 83% for Select-6*. CONCLUSION: A simplified method for CVS assessment in patients referred for suspected MS demonstrated good diagnostic performance and inter-rater agreement.


Assuntos
Esclerose Múltipla , Adulto , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Masculino , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Projetos Piloto , Reprodutibilidade dos Testes , Veias , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia
2.
Mult Scler ; 28(12): 1891-1902, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35674284

RESUMO

BACKGROUND: The "central vein sign" (CVS), a linear hypointensity on T2*-weighted imaging corresponding to a central vein/venule, is associated with multiple sclerosis (MS) lesions. The effect of lesion-size exclusion criteria on MS diagnostic accuracy has not been extensively studied. OBJECTIVE: Investigate the optimal lesion-size exclusion criteria for CVS use in MS diagnosis. METHODS: Cross-sectional study of 163 MS and 51 non-MS, and radiological/histopathological correlation of 5 MS and 1 control autopsy cases. The effects of lesion-size exclusion on MS diagnosis using the CVS, and intralesional vein detection on histopathology were evaluated. RESULTS: CVS+ lesions were larger compared to CVS- lesions, with effect modification by MS diagnosis (mean difference +7.7 mm3, p = 0.004). CVS percentage-based criteria with no lesion-size exclusion showed the highest diagnostic accuracy in differentiating MS cases. However, a simple count of three or more CVS+ lesions greater than 3.5 mm is highly accurate and can be rapidly implemented (sensitivity 93%; specificity 88%). On magnetic resonance imaging (MRI)-histopathological correlation, the CVS had high specificity for identifying intralesional veins (0/7 false positives). CONCLUSION: Lesion-size measures add important information when using CVS+ lesion counts for MS diagnosis. The CVS is a specific biomarker corresponding to intralesional veins on histopathology.


Assuntos
Esclerose Múltipla , Encéfalo/patologia , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Veias/diagnóstico por imagem
3.
Neuroimage Clin ; 28: 102412, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32961401

RESUMO

OBJECTIVES: In multiple sclerosis (MS), the presence of a paramagnetic rim at the edge of non-gadolinium-enhancing lesions indicates perilesional chronic inflammation. Patients featuring a higher paramagnetic rim lesion burden tend to have more aggressive disease. The objective of this study was to develop and evaluate a convolutional neural network (CNN) architecture (RimNet) for automated detection of paramagnetic rim lesions in MS employing multiple magnetic resonance (MR) imaging contrasts. MATERIALS AND METHODS: Imaging data were acquired at 3 Tesla on three different scanners from two different centers, totaling 124 MS patients, and studied retrospectively. Paramagnetic rim lesion detection was independently assessed by two expert raters on T2*-phase images, yielding 462 rim-positive (rim+) and 4857 rim-negative (rim-) lesions. RimNet was designed using 3D patches centered on candidate lesions in 3D-EPI phase and 3D FLAIR as input to two network branches. The interconnection of branches at both the first network blocks and the last fully connected layers favors the extraction of low and high-level multimodal features, respectively. RimNet's performance was quantitatively evaluated against experts' evaluation from both lesion-wise and patient-wise perspectives. For the latter, patients were categorized based on a clinically relevant threshold of 4 rim+ lesions per patient. The individual prediction capabilities of the images were also explored and compared (DeLong test) by testing a CNN trained with one image as input (unimodal). RESULTS: The unimodal exploration showed the superior performance of 3D-EPI phase and 3D-EPI magnitude images in the rim+/- classification task (AUC = 0.913 and 0.901), compared to the 3D FLAIR (AUC = 0.855, Ps < 0.0001). The proposed multimodal RimNet prototype clearly outperformed the best unimodal approach (AUC = 0.943, P < 0.0001). The sensitivity and specificity achieved by RimNet (70.6% and 94.9%, respectively) are comparable to those of experts at the lesion level. In the patient-wise analysis, RimNet performed with an accuracy of 89.5% and a Dice coefficient (or F1 score) of 83.5%. CONCLUSIONS: The proposed prototype showed promising performance, supporting the usage of RimNet for speeding up and standardizing the paramagnetic rim lesions analysis in MS.


Assuntos
Esclerose Múltipla , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Estudos Retrospectivos
4.
NMR Biomed ; 33(5): e4283, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32125737

RESUMO

The central vein sign (CVS) is an efficient imaging biomarker for multiple sclerosis (MS) diagnosis, but its application in clinical routine is limited by inter-rater variability and the expenditure of time associated with manual assessment. We describe a deep learning-based prototype for automated assessment of the CVS in white matter MS lesions using data from three different imaging centers. We retrospectively analyzed data from 3 T magnetic resonance images acquired on four scanners from two different vendors, including adults with MS (n = 42), MS mimics (n = 33, encompassing 12 distinct neurological diseases mimicking MS) and uncertain diagnosis (n = 5). Brain white matter lesions were manually segmented on FLAIR* images. Perivenular assessment was performed according to consensus guidelines and used as ground truth, yielding 539 CVS-positive (CVS+ ) and 448 CVS-negative (CVS- ) lesions. A 3D convolutional neural network ("CVSnet") was designed and trained on 47 datasets, keeping 33 for testing. FLAIR* lesion patches of CVS+ /CVS- lesions were used for training and validation (n = 375/298) and for testing (n = 164/150). Performance was evaluated lesion-wise and subject-wise and compared with a state-of-the-art vesselness filtering approach through McNemar's test. The proposed CVSnet approached human performance, with lesion-wise median balanced accuracy of 81%, and subject-wise balanced accuracy of 89% on the validation set, and 91% on the test set. The process of CVS assessment, in previously manually segmented lesions, was ~ 600-fold faster using the proposed CVSnet compared with human visual assessment (test set: 4 seconds vs. 40 minutes). On the validation and test sets, the lesion-wise performance outperformed the vesselness filter method (P < 0.001). The proposed deep learning prototype shows promising performance in differentiating MS from its mimics. Our approach was evaluated using data from different hospitals, enabling larger multicenter trials to evaluate the benefit of introducing the CVS marker into MS diagnostic criteria.


Assuntos
Aprendizado de Máquina , Esclerose Múltipla/diagnóstico por imagem , Software , Veias/diagnóstico por imagem , Automação , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
5.
J Magn Reson Imaging ; 40(6): 1463-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24923594

RESUMO

PURPOSE: To evaluate different susceptibility-weighted imaging (SWI) phase processing methods and parameter selection, thereby improving understanding of potential artifacts, as well as facilitating choice of methodology in clinical settings. MATERIALS AND METHODS: Two major phase processing methods, homodyne-filtering and phase unwrapping-high pass (HP) filtering, were investigated with various phase unwrapping approaches, filter sizes, and filter types. Magnitude and phase images were acquired from a healthy subject and brain injury patients on a 3T clinical Siemens MRI system. The results were evaluated based on image contrast-to-noise ratio and presence of processing artifacts. RESULTS: When using a relatively small filter size (32 pixels for the matrix size 512 × 512 pixels), all homodyne-filtering methods were subject to phase errors leading to 2% to 3% masked brain area in lower and middle axial slices. All phase unwrapping-filtering/smoothing approaches demonstrated fewer phase errors and artifacts compared to the homodyne-filtering approaches. For performing phase unwrapping, Fourier-based methods, although less accurate, were 2-4 orders of magnitude faster than the PRELUDE, Goldstein, and Quality-guide methods. CONCLUSION: Although homodyne-filtering approaches are faster and more straightforward, phase unwrapping followed by HP filtering approaches perform more accurately in a wider variety of acquisition scenarios.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA