Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895200

RESUMO

Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction. To explore a variety of settings that are relevant for different clinical and research applications, we assess performance within different subsets of the evaluation data and within high-specificity and high-sensitivity regimes. We find strong performance of many predictors across multiple settings. Meta-predictors tend to outperform their constituent individual predictors; however, several individual predictors have performance similar to that of commonly used meta-predictors. The relative performance of predictors differs in high-specificity and high-sensitivity regimes, suggesting that different methods may be best suited to different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare benign variants, and predictors supervised on pathogenicity labels from curated variant databases often learn label imbalances within genes. Overall, we find notable advances over the oldest and most cited missense variant effect predictors and continued improvements among the most recently developed tools, and the CAGI Annotate-All-Missense challenge (also termed the Missense Marathon) will continue to assess state-of-the-art methods as the field progresses. Together, our results help illuminate the current clinical and research utility of missense variant effect predictors and identify potential areas for future development.

2.
Hum Genomics ; 18(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685113

RESUMO

BACKGROUND: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. METHODS: We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. RESULTS: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. CONCLUSIONS: Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.


Assuntos
Doenças Raras , Humanos , Doenças Raras/genética , Doenças Raras/diagnóstico , Genoma Humano/genética , Variação Genética/genética , Biologia Computacional/métodos , Fenótipo
3.
medRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577678

RESUMO

Background: A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery. Families are consented for sharing of sequence and phenotype data with researchers, allowing development of a Critical Assessment of Genome Interpretation (CAGI) community challenge, placing variant prioritization models head-to-head in a real-life clinical diagnostic setting. Methods: Predictors were provided a dataset of phenotype terms and variant calls from GS of 175 RGP individuals (65 families), including 35 solved training set families, with causal variants specified, and 30 test set families (14 solved, 16 unsolved). The challenge tasked teams with identifying the causal variants in as many test set families as possible. Ranked variant predictions were submitted with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on rank position of true positive causal variants and maximum F-measure, based on precision and recall of causal variants across EPCR thresholds. Results: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performing teams recalled the causal variants in up to 13 of 14 solved families by prioritizing high quality variant calls that were rare, predicted deleterious, segregating correctly, and consistent with reported phenotype. In unsolved families, newly discovered diagnostic variants were returned to two families following confirmatory RNA sequencing, and two prioritized novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant, in an unsolved proband with phenotype overlap with asparagine synthetase deficiency. Conclusions: By objective assessment of variant predictions, we provide insights into current state-of-the-art algorithms and platforms for genome sequencing analysis for rare disease diagnosis and explore areas for future optimization. Identification of diagnostic variants in unsolved families promotes synergy between researchers with clinical and computational expertise as a means of advancing the field of clinical genome interpretation.

4.
Nucleic Acids Res ; 49(W1): W60-W66, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-33963861

RESUMO

The Bologna ENZyme Web Server (BENZ WS) annotates four-level Enzyme Commission numbers (EC numbers) as defined by the International Union of Biochemistry and Molecular Biology (IUBMB). BENZ WS filters a target sequence with a combined system of Hidden Markov Models, modelling protein sequences annotated with the same molecular function, and Pfams, carrying along conserved protein domains. BENZ returns, when successful, for any enzyme target sequence an associated four-level EC number. Our system can annotate both monofunctional and polyfunctional enzymes, and it can be a valuable resource for sequence functional annotation.


Assuntos
Enzimas/química , Anotação de Sequência Molecular/métodos , Análise de Sequência de Proteína/métodos , Software , Internet , Cadeias de Markov , Domínios Proteicos , Alinhamento de Sequência
5.
Hum Mutat ; 40(9): 1546-1556, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31294896

RESUMO

Testing for variation in BRCA1 and BRCA2 (commonly referred to as BRCA1/2), has emerged as a standard clinical practice and is helping countless women better understand and manage their heritable risk of breast and ovarian cancer. Yet the increased rate of BRCA1/2 testing has led to an increasing number of Variants of Uncertain Significance (VUS), and the rate of VUS discovery currently outpaces the rate of clinical variant interpretation. Computational prediction is a key component of the variant interpretation pipeline. In the CAGI5 ENIGMA Challenge, six prediction teams submitted predictions on 326 newly-interpreted variants from the ENIGMA Consortium. By evaluating these predictions against the new interpretations, we have gained a number of insights on the state of the art of variant prediction and specific steps to further advance this state of the art.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/diagnóstico , Biologia Computacional/métodos , Neoplasias Ovarianas/diagnóstico , Neoplasias da Mama/genética , Detecção Precoce de Câncer , Feminino , Predisposição Genética para Doença , Testes Genéticos , Variação Genética , Humanos , Modelos Genéticos , Neoplasias Ovarianas/genética
6.
Hum Mutat ; 40(9): 1519-1529, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31342580

RESUMO

The NAGLU challenge of the fourth edition of the Critical Assessment of Genome Interpretation experiment (CAGI4) in 2016, invited participants to predict the impact of variants of unknown significance (VUS) on the enzymatic activity of the lysosomal hydrolase α-N-acetylglucosaminidase (NAGLU). Deficiencies in NAGLU activity lead to a rare, monogenic, recessive lysosomal storage disorder, Sanfilippo syndrome type B (MPS type IIIB). This challenge attracted 17 submissions from 10 groups. We observed that top models were able to predict the impact of missense mutations on enzymatic activity with Pearson's correlation coefficients of up to .61. We also observed that top methods were significantly more correlated with each other than they were with observed enzymatic activity values, which we believe speaks to the importance of sequence conservation across the different methods. Improved functional predictions on the VUS will help population-scale analysis of disease epidemiology and rare variant association analysis.


Assuntos
Acetilglucosaminidase/metabolismo , Biologia Computacional/métodos , Mutação de Sentido Incorreto , Acetilglucosaminidase/genética , Humanos , Modelos Genéticos , Análise de Regressão
7.
Hum Mutat ; 40(9): 1495-1506, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31184403

RESUMO

Thermodynamic stability is a fundamental property shared by all proteins. Changes in stability due to mutation are a widespread molecular mechanism in genetic diseases. Methods for the prediction of mutation-induced stability change have typically been developed and evaluated on incomplete and/or biased data sets. As part of the Critical Assessment of Genome Interpretation, we explored the utility of high-throughput variant stability profiling (VSP) assay data as an alternative for the assessment of computational methods and evaluated state-of-the-art predictors against over 7,000 nonsynonymous variants from two proteins. We found that predictions were modestly correlated with actual experimental values. Predictors fared better when evaluated as classifiers of extreme stability effects. While different methods emerging as top performers depending on the metric, it is nontrivial to draw conclusions on their adoption or improvement. Our analyses revealed that only 16% of all variants in VSP assays could be confidently defined as stability-affecting. Furthermore, it is unclear as to what extent VSP abundance scores were reasonable proxies for the stability-related quantities that participating methods were designed to predict. Overall, our observations underscore the need for clearly defined objectives when developing and using both computational and experimental methods in the context of measuring variant impact.


Assuntos
Biologia Computacional/métodos , Metiltransferases/química , Mutação , PTEN Fosfo-Hidrolase/química , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metiltransferases/genética , PTEN Fosfo-Hidrolase/genética , Estabilidade Proteica
8.
Hum Mutat ; 40(9): 1314-1320, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31140652

RESUMO

Genetics play a key role in venous thromboembolism (VTE) risk, however established risk factors in European populations do not translate to individuals of African descent because of the differences in allele frequencies between populations. As part of the fifth iteration of the Critical Assessment of Genome Interpretation, participants were asked to predict VTE status in exome data from African American subjects. Participants were provided with 103 unlabeled exomes from patients treated with warfarin for non-VTE causes or VTE and asked to predict which disease each subject had been treated for. Given the lack of training data, many participants opted to use unsupervised machine learning methods, clustering the exomes by variation in genes known to be associated with VTE. The best performing method using only VTE related genes achieved an area under the ROC curve of 0.65. Here, we discuss the range of methods used in the prediction of VTE from sequence data and explore some of the difficulties of conducting a challenge with known confounders. In addition, we show that an existing genetic risk score for VTE that was developed in European subjects works well in African Americans.


Assuntos
Sequenciamento do Exoma/métodos , Tromboembolia Venosa/genética , Varfarina/administração & dosagem , Análise por Conglomerados , Biologia Computacional/métodos , Congressos como Assunto , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Curva ROC , Aprendizado de Máquina não Supervisionado , Tromboembolia Venosa/tratamento farmacológico , Varfarina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA