Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Trends Mol Med ; 30(6): 541-551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677980

RESUMO

Population differences in cardiometabolic disease remain unexplained. Misleading assumptions over genetic explanations are partly due to terminology used to distinguish populations, specifically ancestry, race, and ethnicity. These terms differentially implicate environmental and biological causal pathways, which should inform their use. Genetic variation alone accounts for a limited fraction of population differences in cardiometabolic disease. Research effort should focus on societally driven, lifelong environmental determinants of population differences in disease. Rather than pursuing population stratifiers to personalize medicine, we advocate removing socioeconomic barriers to receipt of and adherence to healthcare interventions, which will have markedly greater impact on improving cardiometabolic outcomes. This requires multidisciplinary collaboration and public and policymaker engagement to address inequalities driven by society rather than biology per se.


Assuntos
Doenças Cardiovasculares , Etnicidade , Grupos Raciais , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Metabólicas/epidemiologia , Doenças Metabólicas/genética , Predisposição Genética para Doença , Fatores Socioeconômicos , Disparidades em Assistência à Saúde/etnologia
2.
PLoS Genet ; 17(3): e1009221, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651813

RESUMO

Many complex genomic rearrangements arise through template switch errors, which occur in DNA replication when there is a transient polymerase switch to an alternate template nearby in three-dimensional space. While typically investigated at kilobase-to-megabase scales, the genomic and evolutionary consequences of this mutational process are not well characterised at smaller scales, where they are often interpreted as clusters of independent substitutions, insertions and deletions. Here we present an improved statistical approach using pair hidden Markov models, and use it to detect and describe short-range template switches underlying clusters of mutations in the multi-way alignment of hominid genomes. Using robust statistics derived from evolutionary genomic simulations, we show that template switch events have been widespread in the evolution of the great apes' genomes and provide a parsimonious explanation for the presence of many complex mutation clusters in their phylogenetic context. Larger-scale mechanisms of genome rearrangement are typically associated with structural features around breakpoints, and accordingly we show that atypical patterns of secondary structure formation and DNA bending are present at the initial template switch loci. Our methods improve on previous non-probabilistic approaches for computational detection of template switch mutations, allowing the statistical significance of events to be assessed. By specifying realistic evolutionary parameters based on the genomes and taxa involved, our methods can be readily adapted to other intra- or inter-species comparisons.


Assuntos
Replicação do DNA , Genoma , Hominidae/genética , Cadeias de Markov , Modelos Genéticos , Moldes Genéticos , Algoritmos , Animais , Genômica/métodos , Humanos , Poli A-U , Locos de Características Quantitativas
3.
Bioinformatics ; 32(11): 1749-51, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826718

RESUMO

UNLABELLED: Runs of homozygosity (RoHs) are genomic stretches of a diploid genome that show identical alleles on both chromosomes. Longer RoHs are unlikely to have arisen by chance but are likely to denote autozygosity, whereby both copies of the genome descend from the same recent ancestor. Early tools to detect RoH used genotype array data, but substantially more information is available from sequencing data. Here, we present and evaluate BCFtools/RoH, an extension to the BCFtools software package, that detects regions of autozygosity in sequencing data, in particular exome data, using a hidden Markov model. By applying it to simulated data and real data from the 1000 Genomes Project we estimate its accuracy and show that it has higher sensitivity and specificity than existing methods under a range of sequencing error rates and levels of autozygosity. AVAILABILITY AND IMPLEMENTATION: BCFtools/RoH and its associated binary/source files are freely available from https://github.com/samtools/BCFtools CONTACT: vn2@sanger.ac.uk or pd3@sanger.ac.uk SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Exoma , Genômica , Genótipo , Homozigoto , Software
4.
Am J Hum Genet ; 96(6): 986-91, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26027499

RESUMO

The predominantly African origin of all modern human populations is well established, but the route taken out of Africa is still unclear. Two alternative routes, via Egypt and Sinai or across the Bab el Mandeb strait into Arabia, have traditionally been proposed as feasible gateways in light of geographic, paleoclimatic, archaeological, and genetic evidence. Distinguishing among these alternatives has been difficult. We generated 225 whole-genome sequences (225 at 8× depth, of which 8 were increased to 30×; Illumina HiSeq 2000) from six modern Northeast African populations (100 Egyptians and five Ethiopian populations each represented by 25 individuals). West Eurasian components were masked out, and the remaining African haplotypes were compared with a panel of sub-Saharan African and non-African genomes. We showed that masked Northeast African haplotypes overall were more similar to non-African haplotypes and more frequently present outside Africa than were any sets of haplotypes derived from a West African population. Furthermore, the masked Egyptian haplotypes showed these properties more markedly than the masked Ethiopian haplotypes, pointing to Egypt as the more likely gateway in the exodus to the rest of the world. Using five Ethiopian and three Egyptian high-coverage masked genomes and the multiple sequentially Markovian coalescent (MSMC) approach, we estimated the genetic split times of Egyptians and Ethiopians from non-African populations at 55,000 and 65,000 years ago, respectively, whereas that of West Africans was estimated to be 75,000 years ago. Both the haplotype and MSMC analyses thus suggest a predominant northern route out of Africa via Egypt.


Assuntos
Evolução Biológica , População Negra/genética , Genoma Humano/genética , Migração Humana/história , Sequência de Bases , Antigo Egito , Etiópia , Geografia , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , História Antiga , Humanos , Cadeias de Markov , Modelos Genéticos , Dados de Sequência Molecular , Análise de Componente Principal
5.
PLoS Genet ; 8(12): e1003125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284294

RESUMO

We present a hidden Markov model (HMM) for inferring gradual isolation between two populations during speciation, modelled as a time interval with restricted gene flow. The HMM describes the history of adjacent nucleotides in two genomic sequences, such that the nucleotides can be separated by recombination, can migrate between populations, or can coalesce at variable time points, all dependent on the parameters of the model, which are the effective population sizes, splitting times, recombination rate, and migration rate. We show by extensive simulations that the HMM can accurately infer all parameters except the recombination rate, which is biased downwards. Inference is robust to variation in the mutation rate and the recombination rate over the sequence and also robust to unknown phase of genomes unless they are very closely related. We provide a test for whether divergence is gradual or instantaneous, and we apply the model to three key divergence processes in great apes: (a) the bonobo and common chimpanzee, (b) the eastern and western gorilla, and (c) the Sumatran and Bornean orang-utan. We find that the bonobo and chimpanzee appear to have undergone a clear split, whereas the divergence processes of the gorilla and orang-utan species occurred over several hundred thousands years with gene flow stopping quite recently. We also apply the model to the Homo/Pan speciation event and find that the most likely scenario involves an extended period of gene flow during speciation.


Assuntos
Evolução Molecular , Especiação Genética , Variação Genética , Genoma , Animais , Fluxo Gênico , Genética Populacional , Gorilla gorilla/genética , Humanos , Cadeias de Markov , Modelos Teóricos , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo/genética , Densidade Demográfica
6.
Nature ; 456(7218): 53-9, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987734

RESUMO

DNA sequence information underpins genetic research, enabling discoveries of important biological or medical benefit. Sequencing projects have traditionally used long (400-800 base pair) reads, but the existence of reference sequences for the human and many other genomes makes it possible to develop new, fast approaches to re-sequencing, whereby shorter reads are compared to a reference to identify intraspecies genetic variation. Here we report an approach that generates several billion bases of accurate nucleotide sequence per experiment at low cost. Single molecules of DNA are attached to a flat surface, amplified in situ and used as templates for synthetic sequencing with fluorescent reversible terminator deoxyribonucleotides. Images of the surface are analysed to generate high-quality sequence. We demonstrate application of this approach to human genome sequencing on flow-sorted X chromosomes and then scale the approach to determine the genome sequence of a male Yoruba from Ibadan, Nigeria. We build an accurate consensus sequence from >30x average depth of paired 35-base reads. We characterize four million single-nucleotide polymorphisms and four hundred thousand structural variants, many of which were previously unknown. Our approach is effective for accurate, rapid and economical whole-genome re-sequencing and many other biomedical applications.


Assuntos
Genoma Humano/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Cromossomos Humanos X/genética , Sequência Consenso/genética , Genômica/economia , Genótipo , Humanos , Masculino , Nigéria , Polimorfismo de Nucleotídeo Único/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA