RESUMO
This review aimed to show that bioherbicides are possible in organic agriculture as natural compounds from fungi and metabolites produced by them. It is discussed that new formulations must be developed to improve field stability and enable the commercialization of microbial herbicides. Due to these bottlenecks, it is crucial to advance the bioprocesses behind the formulation and fermentation of bio-based herbicides, scaling up, strategies for field application, and the potential of bioherbicides in the global market. In this sense, it proposed insights for modern agriculture based on sustainable development and circular economy, precisely the formulation, scale-up, and field application of microbial bioherbicides.
Assuntos
Herbicidas , Herbicidas/farmacologia , Herbicidas/metabolismo , Fungos/metabolismo , Fermentação , AgriculturaRESUMO
Renewable energy can assist the management of the effects of population growth and rapid economic development on the sustainability of animal husbandry. The primary aim of renewable energy is to minimize the use of fossil fuels via the creation of environmentally friendly energy products from depleted fossil fuels. Digesters that treat swine manure are extensively used in treatment systems; and inclusion of swine carcasses can increase the organic loading rate (OLR) thereby improving biogas yield and productivity on farms. However, the characteristics of the components including animal residues, proteins, lipids, remains of undigested feed items, antimicrobial drug residues, pathogenic microorganisms and nutrient contents, are complex and diverse. It is therefore necessary to manage the anaerobic process stability and digestate purification for subsequent use as fertilizer. Efficient methane recovery from residues rich in lipids is difficult because such residues are only slowly biodegradable. Pretreatment can promote solubilization of lipids and accelerate anaerobic digestion, and pretreatments can process the swine carcass before its introduction onto biodigesters. This review presents an overview of the anaerobic digestion of swine manure and carcasses. We analyze the characteristics of these residues, and we identify strategies to enhance biogas yield and process stability. We consider energy potential, co-digestion of swine manure and carcasses, physical, chemical, and biological pretreatment of biomass, sanitary aspects of swine manure and co-digestates and their recycling as fertilizers.
RESUMO
In this study, we evaluated the concentration of lipases from Aspergillus niger using efficient and low-cost methods aiming at application in the treatment of waste cooking oils. The change in ionic strength of the medium by the addition of salt and precipitation with ethanol increased the specific activity from 2.90 to 28.50 U/mg, resulting in a purification factor of 9.82-fold. The use of acetone resulted in a specific activity of 33.63 U/mg, resulting in a purification factor of 11.60-fold. After that, the concentrated lipase was used in the hydrolysis of waste cooking oil and 753.07 and 421.60 µmol/mL of free fatty acids were obtained for the enzyme precipitated with ethanol and acetone, respectively. The hydrolysis of waste cooking oil catalyzed by homemade purified lipase in ultrasonic media can be considered a pretreatment of oil by converting a significant amount of triglycerides into free fatty acids.