Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Echocardiography ; 41(6): e15833, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38873982

RESUMO

BACKGROUND: Prenatal echocardiographic assessment of fetal cardiac function has become increasingly important. Fetal two-dimensional speckle-tracking echocardiography (2D-STE) allows the determination of global and segmental functional cardiac parameters. Prenatal diagnostics is relying increasingly on artificial intelligence, whose algorithms transform the way clinicians use ultrasound in their daily workflow. The purpose of this study was to demonstrate the feasibility of whether less experienced operators can handle and might benefit from an automated tool of 2D-STE in the clinical routine. METHODS: A total of 136 unselected, normal, singleton, second- and third-trimester fetuses with normofrequent heart rates were examined by targeted ultrasound. 2D-STE was performed separately by beginner and expert semiautomatically using a GE Voluson E10 (FetalHQ®, GE Healthcare, Chicago, IL). Several fetal cardiac parameters were calculated (end-diastolic diameter [ED], sphericity index [SI], global longitudinal strain [EndoGLS], fractional shortening [FS]) and assigned to gestational age (GA). Bland-Altman plots were used to test agreement between both operators. RESULTS: The mean maternal age was 33 years, and the mean maternal body mass index prior to pregnancy was 24.78 kg/m2. The GA ranged from 16.4 to 32.0 weeks (average 22.9 weeks). Averaged endoGLS value of the beginner was -18.57% ± 6.59 percentage points (pp) for the right and -19.58% ± 5.63 pp for the left ventricle, that of the expert -14.33% ± 4.88 pp and -16.37% ± 5.42 pp. With increasing GA, right ventricular endoGLS decreased slightly while the left ventricular was almost constant. The statistical analysis for endoGLS showed a Bland-Altman-Bias of -4.24 pp ± 8.06 pp for the right and -3.21 pp ± 7.11 pp for the left ventricle. The Bland-Altman-Bias of the ED in both ventricles in all analyzed segments ranged from -.49 mm ± 1.54 mm to -.10 mm ± 1.28 mm, that for FS from -.33 pp ± 11.82 pp to 3.91 pp ± 15.56 pp and that for SI from -.38 ± .68 to -.15 ± .45. CONCLUSIONS: Between both operators, our data indicated that 2D-STE analysis showed excellent agreement for cardiac morphometry parameters (ED and SI), and good agreement for cardiac function parameters (EndoGLS and FS). Due to its complexity, the application of fetal 2D-STE remains the domain of scientific-academic perinatal ultrasound and should be placed preferably in the hands of skilled operators. At present, from our perspective, an implementation into clinical practice "on-the-fly" cannot be recommended.


Assuntos
Ecocardiografia , Coração Fetal , Ultrassonografia Pré-Natal , Humanos , Feminino , Gravidez , Coração Fetal/diagnóstico por imagem , Coração Fetal/fisiopatologia , Ultrassonografia Pré-Natal/métodos , Ecocardiografia/métodos , Adulto , Reprodutibilidade dos Testes , Estudos de Viabilidade , Idade Gestacional
2.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238193

RESUMO

(1) Objectives: In utero functional cardiac assessments using echocardiography have become increasingly important. The myocardial performance index (MPI, Tei index) is currently used to evaluate fetal cardiac anatomy, hemodynamics and function. An ultrasound examination is highly examiner-dependent, and training is of enormous significance in terms of proper application and subsequent interpretation. Future experts will progressively be guided by applications of artificial intelligence, on whose algorithms prenatal diagnostics will rely on increasingly. The objective of this study was to demonstrate the feasibility of whether less experienced operators might benefit from an automated tool of MPI quantification in the clinical routine. (2) Methods: In this study, a total of 85 unselected, normal, singleton, second- and third-trimester fetuses with normofrequent heart rates were examined by a targeted ultrasound. The modified right ventricular MPI (RV-Mod-MPI) was measured, both by a beginner and an expert. A calculation was performed semiautomatically using a Samsung Hera W10 ultrasound system (MPI+™, Samsung Healthcare, Gangwon-do, South Korea) by taking separate recordings of the right ventricle's in- and outflow using a conventional pulsed-wave Doppler. The measured RV-Mod-MPI values were assigned to gestational age. The data were compared between the beginner and the expert using a Bland-Altman plot to test the agreement between both operators, and the intraclass correlation was calculated. (3) Results: The mean maternal age was 32 years (19 to 42 years), and the mean maternal pre-pregnancy body mass index was 24.85 kg/m2 (ranging from 17.11 to 44.08 kg/m2). The mean gestational age was 24.44 weeks (ranging from 19.29 to 36.43 weeks). The averaged RV-Mod-MPI value of the beginner was 0.513 ± 0.09, and that of the expert was 0.501 ± 0.08. Between the beginner and the expert, the measured RV-Mod-MPI values indicated a similar distribution. The statistical analysis showed a Bland-Altman bias of 0.01136 (95% limits of agreement from -0.1674 to 0.1902). The intraclass correlation coefficient was 0.624 (95% confidence interval from 0.423 to 0.755). (4) Conclusions: For experts as well as for beginners, the RV-Mod-MPI is an excellent diagnostic tool for the assessment of fetal cardiac function. It is a time-saving procedure, offers an intuitive user interface and is easy to learn. There is no additional effort required to measure the RV-Mod-MPI. In times of reduced resources, such assisted systems of fast value acquisition represent clear added value. The establishment of the automated measurement of the RV-Mod-MPI in clinical routine should be the next level in cardiac function assessment.

3.
J Clin Med ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887826

RESUMO

(1) Objective: To scrutinize the reliability and the clinical value of routinely used fetal intelligent navigation echocardiography (FINE) static mode (5DHeartStatic™) for accelerated semiautomatic volumetric assessment of the normal fetal heart. (2) Methods: In this study, a total of 296 second and third trimester fetuses were examined by targeted ultrasound. Spatiotemporal image correlation (STIC) volumes of the fetal heart were acquired for further volumetric assessment. In addition, all fetal hearts were scanned by a fast acquisition time volume (1 s). The volumes were analyzed using the FINE software. The data were investigated regarding the number of properly reconstructed planes and cardiac axis. (3) Results: A total of 257 volumes were included for final analysis. The mean gestational age (GA) was 23.9 weeks (14.3 to 37.7 weeks). In 96.9 (standard acquisition time, FINE standard mode) and 94.2% (fast acquisition time, FINE static mode) at least seven planes were reconstructed properly (p = 0.0961, not significant). Regarding the overall depiction rate, the standard mode was able to reconstruct 96.9% of the planes properly, whereas the static mode showed 95.2% of the planes (p = 0.0098). Moreover, there was no significant difference between the automatic measurement of the cardiac axis (37.95 + 9.14 vs. 38.00 + 8.92 degrees, p = 0.8827, not significant). (4) Conclusions: Based on our results, the FINE static mode technique is a reliable method. It provides similar information of the cardiac anatomy compared to conventional STIC volumes assessed by the FINE method. The FINE static mode has the potential to minimize the influence of motion artifacts during volume acquisition and might therefore be helpful concerning volumetric cardiac assessment in daily routine.

4.
Geburtshilfe Frauenheilkd ; 81(11): 1203-1216, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34754270

RESUMO

The long-awaited progress in digitalisation is generating huge amounts of medical data every day, and manual analysis and targeted, patient-oriented evaluation of this data is becoming increasingly difficult or even infeasible. This state of affairs and the associated, increasingly complex requirements for individualised precision medicine underline the need for modern software solutions and algorithms across the entire healthcare system. The utilisation of state-of-the-art equipment and techniques in almost all areas of medicine over the past few years has now indeed enabled automation processes to enter - at least in part - into routine clinical practice. Such systems utilise a wide variety of artificial intelligence (AI) techniques, the majority of which have been developed to optimise medical image reconstruction, noise reduction, quality assurance, triage, segmentation, computer-aided detection and classification and, as an emerging field of research, radiogenomics. Tasks handled by AI are completed significantly faster and more precisely, clearly demonstrated by now in the annual findings of the ImageNet Large-Scale Visual Recognition Challenge (ILSVCR), first conducted in 2015, with error rates well below those of humans. This review article will discuss the potential capabilities and currently available applications of AI in gynaecological-obstetric diagnostics. The article will focus, in particular, on automated techniques in prenatal sonographic diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA