Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Prev Vet Med ; 118(1): 128-41, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25496909

RESUMO

Some practices undertaken by poultry exhibitors, such as allowing wild birds to contact domestic birds, the high frequency of bird movements and the lack of appropriate isolation for incoming birds, pose a risk for disease introduction and spread. The aim of the current study was to quantitatively assess the probability of introduction of low pathogenic avian influenza (LPAI) viruses from wild waterfowl into poultry exhibition flocks and the subsequent spread to other poultry flocks. Exposure and consequence assessments, using scenario trees and Monte Carlo stochastic simulation modelling, were conducted to identify potential pathways of introduction and spread and calculate the probabilities of these pathways occurring. Input parameters were estimated from two recently conducted cross-sectional studies among poultry exhibitors in Australia (Dusan et al., 2010; Hernández-Jover et al., 2013) and other scientific literature. According to reported practices of poultry exhibitors and the LPAI prevalence in wild birds in Australia, this assessment estimates a median (5-95%) probability of exposure of a bird kept by a poultry exhibitor of 0.004 (0.003-0.005). Due to the higher susceptibility of infection of turkeys and waterfowl, this probability is higher in flocks keeping these bird species than in those keeping chickens or pigeons only. Similarly, once exposure has occurred, establishment of infection and subsequent spread are more likely in those flocks keeping waterfowl and turkeys than in those keeping chicken and pigeons only. Spread through movement of birds is the most likely pathway of spread, followed by contaminated fomites, wild birds and airborne spread. The median probability of LPAI spread through movement of birds in flocks keeping waterfowl and turkeys was estimated to be 0.280 (0.123-0.541) and 0.230 (0.104-0.421), respectively. A lower probability was estimated for chicken (0.087; 0.027-0.202) and pigeon (0.0003; 3.0×10(-5)-0.0008) flocks. The sensitivity analysis indicates that the prevalence of LPAI in wild waterfowl and the probability of contact of domestic birds with wild waterfowl are the most influential parameters on the probability of exposure; while the probability of spread is mostly influenced by the probability of movement of birds and the probability of the exhibitor detecting and reporting LPAI. To minimize the potential risk of AI introduction and spread, poultry exhibitors should prevent contact of domestic birds with wild birds, and implement appropriate biosecurity practices. In addition, adequate extension services are required to improve exhibitors' abilities to recognize diseases and reporting behaviour.


Assuntos
Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Animais , Austrália/epidemiologia , Aves/virologia , Estudos Transversais , Surtos de Doenças/veterinária , Mapas como Assunto , Método de Monte Carlo , Aves Domésticas/virologia , Prevalência , Medição de Risco/métodos , Fatores de Risco
2.
Transbound Emerg Dis ; 61(5): 449-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23279804

RESUMO

Rapid, evidence-based decision-making is critical during a disease outbreak response; however, compliance by stakeholders is necessary to ensure that such decisions are effective - especially if the response depends on voluntary action. This mixed method study evaluated technical policy decision-making processes during the 2007 outbreak of equine influenza in Australia by identifying and analysing the stakeholder network involved and the factors driving policy decision-making. The study started with a review of the outbreak literature and published policy documents. This identified six policy issues regarding policy modifications or differing interpretations by different state agencies. Data on factors influencing the decision-making process for these six issues and on stakeholder interaction were collected using a pre-tested, semi-structured questionnaire. Face-to-face interviews were conducted with 24 individuals representing 12 industry and government organizations. Quantitative data were analysed using social network analysis. Qualitative data were coded and patterns matched to test a pre-determined general theory using a method called theory-oriented process-tracing. Results revealed that technical policy decisions were framed by social, political, financial, strategic and operational considerations. Industry stakeholders had influence through formal pre-existing channels, yet specific gaps in stakeholder interaction were overcome by reactive alliances formed during the outbreak response but outside the established system. Overall, the crisis management system and response were seen as positive, and 75-100% of individuals interviewed were supportive of, had interest in and considered the outcome as good for the majority of policy decisions, yet only 46-75% of those interviewed considered that they had influence on these decisions. Training to increase awareness and knowledge of emergency animal diseases (EADs) and response systems will improve stakeholder participation in emergency disease management and preparedness for future EAD incursions.


Assuntos
Tomada de Decisões , Surtos de Doenças/veterinária , Política de Saúde , Doenças dos Cavalos/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Animais , Austrália/epidemiologia , Doenças dos Cavalos/epidemiologia , Cavalos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/prevenção & controle , Gestão de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA