RESUMO
In Santa Quitéria City, part of the population uses surface water for potation. These waters do not undergo any treatment before consumption. As the region has a deposit of uranium, assessing water quality becomes important. In the present study, the uranium activity concentration (AC) in becquerels per liter was determined in water samples from six points. Univariate statistics showed differences between the soluble and the particulate fraction (soluble AC > particulate AC). The particulate fraction showed no variation in AC among the six points. On the other hand, the soluble fraction and the total fraction presented different ACs between them. The multivariate statistics allowed to separate the soluble from the particulate fraction of the points. The same tools applied to the total fraction made it possible to differentiate the sampling points, grouping them ((#1, #2); (#3, #4), and (#5, #6)). The maximum mean value of AC found was 0.177 BqâL-1, corresponding to 25% of the chemical toxicity limit (0.72 BqâL-1). The maximum mean dose rate, 2.25 µSvâyear-1, is lower than the considered negligible dose rate (> 10 µSvâyear-1). The excess lifetime cancer risk was 10-6, two orders of magnitude smaller than the threshold considered for taking action. The assessment parameters used in this work indicate that the risk due to the uranium intake by the local population is negligible.
Assuntos
Urânio , Urânio/análise , Brasil , Poluentes Radioativos da Água/análise , Humanos , Monitoramento de RadiaçãoRESUMO
A biotecnologia pode desempenhar um papel importante para atingir as metas da sustentabilidade. No presente trabalho, são descritos diferentes exemplos bem-sucedidos de micro-organismos especialmente desenhados para otimizar a produção de etanol, a produção de plásticos biodegradáveis a partir de recursos renováveis e a biorremediação de metais tóxicos. Esses processos biotecnológicos contribuem significantemente para promover o desenvolvimento sustentável, embora possam, por enquanto, não ser ainda competitivos em relação às tecnologias convencionais.
Biotechnology can play an important role to reach the goals of sustainability. In the present work, we describe successful examples of microorganisms especially designed for optimizing ethanol production, biodegradable plastics production from renewable resources, and toxic metals bioremediation. These biotechnological processes significantly contribute to promote sustainable development, although they may, at present, not be competitive with the conventional technologies.