Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroscience ; 520: 39-45, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080446

RESUMO

The Zwicker tone illusion - an auditory phantom percept after hearing a notched noise stimulus - can serve as an interesting model for acute tinnitus. Recent mechanistic models suggest that the underlying neural mechanisms of both percepts are similar. To date it is not clear if animals do perceive the Zwicker tone, as up to now no behavioral paradigms are available to objectively assess the presence of this phantom percept. Here we introduce, for the first time, a modified version of the gap pre-pulse inhibition of the acoustic startle reflex (GPIAS) paradigm to test if it is possible to induce a Zwicker tone percept in our rodent model, the Mongolian gerbil. Furthermore, we developed a new aversive conditioning learning paradigm and compare the two approaches. We found a significant increase in the GPIAS effect when presenting a notched noise compared to white noise gap pre-pulse inhibition, which is consistent with the interpretation of a Zwicker tone percept in these animals. In the aversive conditioning learning paradigm, no clear effect could be observed in the discrimination performance of the tested animals. When investigating the first 33% of the correct conditioned responses, an effect of a possible Zwicker tone percept can be seen, i.e. animals show identical behavior as if a pure tone was presented, but the paradigm needs to be further improved. Nevertheless, the results indicate that Mongolian gerbils are able to perceive a Zwicker tone and can serve as a neurophysiological model for human tinnitus generation.


Assuntos
Ilusões , Zumbido , Humanos , Animais , Gerbillinae , Audição , Ruído , Reflexo de Sobressalto/fisiologia , Estimulação Acústica
2.
Front Behav Neurosci ; 11: 198, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093668

RESUMO

Background: An increasingly used behavioral paradigm for the objective assessment of a possible tinnitus percept in animal models has been proposed by Turner and coworkers in 2006. It is based on gap-prepulse inhibition (PPI) of the acoustic startle reflex (ASR) and usually referred to as GPIAS. As it does not require conditioning it became the method of choice to study neuroplastic phenomena associated with the development of tinnitus. Objective: It is still controversial if GPIAS is really appropriate for tinnitus screening, as the hypothesis that a tinnitus percept impairs the gap detection ability ("filling-in interpretation" is still questioned. Furthermore, a wide range of criteria for positive tinnitus detection in GPIAS have been used across different laboratories and there still is no consensus on a best practice for statistical evaluation of GPIAS results. Current approaches are often based on simple averaging of measured PPI values and comparisons on a population level without the possibility to perform valid statistics on the level of the single animal. Methods: A total number of 32 animals were measured using the standard GPIAS paradigm with varying number of measurement repetitions. Based on this data further statistical considerations were performed. Results: We here present a new statistical approach to overcome the methodological limitations of GPIAS. In a first step we show that ASR amplitudes are not normally distributed. Next we estimate the distribution of the measured PPI values by exploiting the full combinatorial power of all measured ASR amplitudes. We demonstrate that the amplitude ratios (1-PPI) are approximately lognormally distributed, allowing for parametrical testing of the logarithmized values and present a new statistical approach allowing for a valid and reliable statistical assessment of PPI changes in GPIAS. Conclusion: Based on our statistical approach we recommend using a constant criterion, which does not systematically depend on the number of measurement repetitions, in order to divide animals into a tinnitus and a non-tinnitus group. In particular, we recommend using a constant threshold based on the effect size as criterion, as the effect size, in contrast to the p-value, does not systematically depend on the number of measurement repetitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA