Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytotherapy ; 22(7): 388-397, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32414635

RESUMO

BACKGROUND AIMS: Recent technical and clinical advances with cell-based therapies (CBTs) hold great promise in the treatment of patients with rare diseases and those with high unmet medical need. Currently the majority of CBTs are developed and manufactured in specialized academic facilities. Due to small scale, unique characteristics and specific supply chain, CBT manufacturing is considered costly compared to more conventional medicinal products. As a result, biomedical researchers and clinicians are increasingly faced with cost considerations in CBT development. The objective of this research was to develop a costing framework and methodology for academic and other small-scale facilities that manufacture cell-based therapies. METHODS: We conducted an international multi-center costing study in four facilities in Europe using eight CBTs as case studies. This study includes costs from cell or tissue procurement to release of final product for clinical use. First, via interviews with research scientists, clinicians, biomedical scientists, pharmacists and technicians, we designed a high-level costing framework. Next, we developed a more detailed uniform methodology to allocate cost items. Costs were divided into steps (tissue procurement, manufacturing and fill-finish). The steps were each subdivided into cost categories (materials, equipment, personnel and facility), and each category was broken down into facility running (fixed) costs and operational (variable) costs. The methodology was tested via the case studies and validated in developer interviews. Costs are expressed in 2018 euros (€). RESULTS: The framework and methodology were applicable across facilities and proved sensitive to differences in product and facility characteristics. Case study cost estimates ranged between €23 033 and €190 799 Euros per batch, with batch yield varying between 1 and 88 doses. The cost estimations revealed hidden costs to developers and provided insights into cost drivers to help design manufacturing best practices. CONCLUSIONS: This framework and methodology provide step-by-step guidance to estimate manufacturing costs specifically for cell-based therapies manufactured in academic and other small-scale enterprises. The framework and methodology can be used to inform and plan cost-conscious strategies for CBTs.


Assuntos
Academias e Institutos , Terapia Baseada em Transplante de Células e Tecidos/economia , Custos e Análise de Custo , Comércio , Europa (Continente) , Instalações de Saúde , Humanos
2.
Cancer Immunol Immunother ; 65(3): 327-39, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26861670

RESUMO

Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Melanoma/terapia , Monócitos/citologia , Adulto , Idoso , Vacina BCG/imunologia , Vacinas Anticâncer/efeitos adversos , Dinoprostona/farmacologia , Feminino , Hemocianinas/imunologia , Humanos , Masculino , Melanoma/imunologia , Pessoa de Meia-Idade , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/imunologia , Linfócitos T/imunologia , Vacinação , Antígeno gp100 de Melanoma/genética , Antígeno gp100 de Melanoma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA