Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chem Res Toxicol ; 33(7): 1709-1718, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32338872

RESUMO

A valuable approach to chemical safety assessment is the use of read-across chemicals to provide safety data to support the assessment of structurally similar chemicals. An inventory of over 6000 discrete organic chemicals used as fragrance materials in consumer products has been clustered into chemical class-based groups for efficient search of read-across sources. We developed a robust, tiered system for chemical classification based on (1) organic functional group, (2) structural similarity and reactivity features of the hydrocarbon skeletons, (3) predicted or experimentally verified Phase I and Phase II metabolism, and (4) expert pruning to consider these variables in the context of specific toxicity end points. The systematic combination of these data yielded clusters, which may be visualized as a top-down hierarchical clustering tree. In this tree, chemical classes are formed at the highest level according to organic functional groups. Each subsequent subcluster stemming from classes in this hierarchy of the cluster is a chemical cluster defined by common organic functional groups and close similarity in the hydrocarbon skeleton. By examining the available experimental data for a toxicological endpoint within each cluster, users can better identify potential read-across chemicals to support safety assessments.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos/química , Cosméticos/classificação , Odorantes/análise , Compostos Orgânicos/química , Compostos Orgânicos/toxicidade , Análise por Conglomerados , Cosméticos/efeitos adversos , Cosméticos/metabolismo , Bases de Dados de Compostos Químicos , Estrutura Molecular , Compostos Orgânicos/classificação , Compostos Orgânicos/metabolismo , Medição de Risco
2.
Regul Toxicol Pharmacol ; 105: 51-61, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30970268

RESUMO

The Read-Across Assessment Framework (RAAF) was developed by the European Chemicals Agency (ECHA) as an internal tool providing a framework for a consistent, structured and transparent assessment of grouping of chemicals and read-across. Following a RAAF-based evaluation, also developers and users of read-across predictions outside ECHA can judge whether their read-across rationale is sufficiently robust from a regulatory perspective. The aim of this paper is to describe the implementation of RAAF functionalities in the OECD QSAR Toolbox report. These can be activated in the prediction report after performing a readacross prediction. Once the user manually selects the appropriate scenario, the RAAF assessment elements appear and are automatically aligned with the suitable category elements of the Toolbox report. Subsequently, these are evaluated as part of the category consistency assessment functionality. The implementation of the RAAF functionality is illustrated in practice with two examples.


Assuntos
Segurança Química/métodos , Substâncias Perigosas/toxicidade , Medição de Risco/métodos , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Relação Quantitativa Estrutura-Atividade , Incerteza
3.
Chem Res Toxicol ; 31(8): 814-820, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30016085

RESUMO

Mitochondrial dysfunction is the result of a number of processes including the uncoupling of oxidative phosphorylation. This study outlines the development of a decision tree-based profiling scheme capable of assigning chemicals to one of six confidence-based categories. The decision tree is based on a set of structural alerts and physicochemical boundaries identified from a detailed study of the literature. The physicochemical boundaries define a chemical relationship with both log P and p Ka. The study also outlines how the decision tree can be used to profile databases through an analysis of the publically available databases in the OECD QSAR Toolbox. This analysis enabled a set of additional structural alerts to be identified that are of concern for protonophoric ability. The decision tree will be incorporated in the OECD QSAR Toolbox V4.3. The intended usage is to group the chemicals into categories of chronic human health and environmental toxicological end points.


Assuntos
Árvores de Decisões , Mitocôndrias/fisiologia , Fosforilação Oxidativa , Humanos , Relação Quantitativa Estrutura-Atividade
4.
Methods Mol Biol ; 1800: 55-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29934887

RESUMO

The OECD QSAR Toolbox is a computer software designed to make pragmatic qualitative and quantitative structure-activity relationship methods-based predictions of toxicity, including read-across, available to the user in a comprehensible and transparent manner. The Toolbox, provide information on chemicals in structure-searchable, standardized files that are associated with chemical and toxicity data to ensure that proper structural analogs can be identified. This chapter describes the advantages of the Toolbox, the aims, approach, and workflow of it, as well as reviews its history. Additionally, key functional elements of it use are explained and features new to Version 4.1 are reported. Lastly, the further development of the Toolbox, likely needed to transform it into a more comprehensive Chemical Management System, is considered.


Assuntos
Relação Quantitativa Estrutura-Atividade , Software , Estrogênios/química , Estrogênios/metabolismo , Modelos Químicos , Organização para a Cooperação e Desenvolvimento Econômico , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Fluxo de Trabalho
5.
J Appl Toxicol ; 36(12): 1536-1550, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27225589

RESUMO

We investigated the performance of an integrated approach to testing and assessment (IATA), designed to cover different genotoxic mechanisms causing cancer and to replicate measured carcinogenicity data included in a new consolidated database. Genotoxic carcinogenicity was predicted based on positive results from at least two genotoxicity tests: one in vitro and one in vivo (which were associated with mutagenicity categories according to the Globally Harmonized System classification). Substances belonging to double positives mutagenicity categories were assigned to be genotoxic carcinogens. In turn, substances that were positive only in a single mutagenicity test were assigned to be mutagens. Chemicals not classified by the selected genotoxicity endpoints were assigned to be negative genotoxic carcinogens and subsequently evaluated for their capability to elicit non-genotoxic carcinogenicity. However, non-genotoxic carcinogenicity mechanisms were not currently included in the developed IATA. The IATA is docked to the OECD Toolbox and uses measured data for different genotoxicity endpoints when available. Alternatively, the system automatically provides predictions by SAR genotoxicity models using the OASIS Tissue Metabolism Simulator platform. When the developed IATA was tested against the consolidated database, its performance was found to be high, with sensitivity of 74% and specificity of 83%, when measured carcinogenicity data were used along with predictions falling within the models' applicability domains. Performance of the IATA would be slightly changed to a sensitivity of 80% and specificity of 72% when the evaluation by non-genotoxic carcinogenicity mechanisms was taken into account. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Carcinógenos/toxicidade , Mutagênicos/toxicidade , Animais , Testes de Carcinogenicidade/métodos , Carcinógenos/química , Bases de Dados Factuais , Modelos Biológicos , Testes de Mutagenicidade/métodos , Mutagênicos/química , Valor Preditivo dos Testes , Ratos , Medição de Risco/métodos , Relação Estrutura-Atividade
6.
Environ Toxicol Pharmacol ; 42: 135-45, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26851376

RESUMO

Data on toxicity toward Tetrahymena pyriformis is indicator of applicability of a substance in ecologic and pharmaceutical aspects. Quantitative structure-activity relationships (QSARs) between the molecular structure of benzene derivatives and toxicity toward T. pyriformis (expressed as the negative logarithms of the population growth inhibition dose, mmol/L) are established. The available data were randomly distributed three times into the visible training and calibration sets, and invisible validation sets. The statistical characteristics for the validation set are the following: r(2)=0.8179 and s=0.338 (first distribution); r(2)=0.8682 and s=0.341 (second distribution); r(2)=0.8435 and s=0.323 (third distribution). These models are built up using only information on the molecular structure: no data on physicochemical parameters, 3D features of the molecular structure and quantum mechanics descriptors are involved in the modeling process.


Assuntos
Derivados de Benzeno/toxicidade , Substâncias Perigosas/toxicidade , Modelos Químicos , Relação Quantitativa Estrutura-Atividade , Tetrahymena pyriformis/efeitos dos fármacos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA