Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Theor Biol ; 591: 111865, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38823767

RESUMO

Dengue is a vector-borne disease transmitted by Aedes mosquitoes. The worldwide spread of these mosquitoes and the increasing disease burden have emphasized the need for a spatio-temporal risk map capable of assessing dengue outbreak conditions and quantifying the outbreak risk. Given that the life cycle of Aedes mosquitoes is strongly influenced by habitat temperature, numerous studies have utilized temperature-dependent development rates of these mosquitoes to construct virus transmission and outbreak risk models. In this study, we contribute to existing research by developing a mechanistic model for the mosquito life cycle that accurately captures its non-Markovian nature. Beginning with integral equations to track the mosquito population across different life cycle stages, we demonstrate how to derive the corresponding differential equations using phase-type distributions. This approach can be further applied to similar non-Markovian processes that are currently described with less accurate Markovian models. By fitting the model to data on human dengue cases, we estimate several model parameters, allowing the development of a global spatiotemporal dengue risk map. This risk model employs temperature and precipitation data to assess the environmental suitability for dengue outbreaks in a given area.


Assuntos
Aedes , Dengue , Dengue/transmissão , Dengue/epidemiologia , Animais , Aedes/virologia , Humanos , Surtos de Doenças , Mosquitos Vetores/virologia , Mosquitos Vetores/crescimento & desenvolvimento , Modelos Biológicos , Temperatura , Cadeias de Markov , Medição de Risco , Vírus da Dengue/fisiologia
2.
Am J Trop Med Hyg ; 104(4): 1444-1455, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33534755

RESUMO

Vector-borne disease risk assessment is crucial to optimize surveillance, preventative measures (vector control), and resource allocation (medical supplies). High arthropod abundance and host interaction strongly correlate to vector-borne pathogen transmission. Increasing host density and movement increases the possibility of local and long-distance pathogen transmission. Therefore, we developed a risk-assessment framework using climate (average temperature and rainfall) and host demographic (host density and movement) data, particularly suitable for regions with unreported or underreported incidence data. This framework consisted of a spatiotemporal network-based approach coupled with a compartmental disease model and nonhomogeneous Gillespie algorithm. The correlation of climate data with vector abundance and host-vector interactions is expressed as vectorial capacity-a parameter that governs the spreading of infection from an infected host to a susceptible one via vectors. As an example, the framework is applied for dengue in Bangladesh. Vectorial capacity is inferred for each week throughout a year using average monthly temperature and rainfall data. Long-distance pathogen transmission is expressed with human movement data in the spatiotemporal network. We have identified the spatiotemporal suitability of dengue spreading in Bangladesh as well as the significant-incidence window and peak-incidence period. Analysis of yearly dengue data variation suggests the possibility of a significant outbreak with a new serotype introduction. The outcome of the framework comprised spatiotemporal suitability maps and probabilistic risk maps for spatial infection spreading. This framework is capable of vector-borne disease risk assessment without historical incidence data and can be a useful tool for preparedness with accurate human movement data.


Assuntos
Clima , Dengue/epidemiologia , Dengue/transmissão , Mosquitos Vetores/virologia , Análise Espaço-Temporal , Doenças Transmitidas por Vetores/epidemiologia , Aedes/virologia , Algoritmos , Animais , Bangladesh/epidemiologia , Vírus da Dengue/classificação , Vírus da Dengue/patogenicidade , Surtos de Doenças , Feminino , Humanos , Incidência , Medição de Risco/métodos , Sorogrupo , Temperatura , Doenças Transmitidas por Vetores/virologia
3.
Sci Rep ; 9(1): 16060, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690844

RESUMO

Network-based modelling of infectious diseases apply compartmental models on a contact network, which makes the epidemic process crucially dependent on the network structure. For highly contagious diseases such as Ebola virus disease (EVD), interpersonal contact plays the most vital role in human-to-human transmission. Therefore, for accurate representation of EVD spreading, the contact network needs to resemble the reality. Prior research has mainly focused on static networks (only permanent contacts) or activity-driven networks (only temporal contacts) for Ebola spreading. A comprehensive network for EVD spreading should include both these network structures, as there are always some permanent contacts together with temporal contacts. Therefore, we propose a two-layer temporal network for Uganda, which is at risk of an Ebola outbreak from the neighboring Democratic Republic of Congo (DRC) epidemic. The network has a permanent layer representing permanent contacts among individuals within the family level, and a data-driven temporal network for human movements motivated by cattle trade, fish trade, or general communications. We propose a Gillespie algorithm with the susceptible-infected-recovered (SIR) compartmental model to simulate the evolution of EVD spreading as well as to evaluate the risk throughout our network. As an example, we applied our method to a network consisting of 23 districts along different movement routes in Uganda starting from bordering districts of the DRC to Kampala. Simulation results show that some regions are at higher risk of infection, suggesting some focal points for Ebola preparedness and providing direction to inform interventions in the field. Simulation results also show that decreasing physical contact as well as increasing preventive measures result in a reduction of chances to develop an outbreak. Overall, the main contribution of this paper lies in the novel method for risk assessment, which can be more precise with an increasing volume of accurate data for creating the network model.


Assuntos
Algoritmos , Surtos de Doenças , Ebolavirus , Doença pelo Vírus Ebola , Modelos Biológicos , República Democrática do Congo/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/transmissão , Humanos , Uganda/epidemiologia
4.
PLoS Comput Biol ; 15(3): e1006875, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30865618

RESUMO

West Nile virus (WNV)-a mosquito-borne arbovirus-entered the USA through New York City in 1999 and spread to the contiguous USA within three years while transitioning from epidemic outbreaks to endemic transmission. The virus is transmitted by vector competent mosquitoes and maintained in the avian populations. WNV spatial distribution is mainly determined by the movement of residential and migratory avian populations. We developed an individual-level heterogeneous network framework across the USA with the goal of understanding the long-range spatial distribution of WNV. To this end, we proposed three distance dispersal kernels model: 1) exponential-short-range dispersal, 2) power-law-long-range dispersal in all directions, and 3) power-law biased by flyway direction -long-range dispersal only along established migratory routes. To select the appropriate dispersal kernel we used the human case data and adopted a model selection framework based on approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC). From estimated parameters, we find that the power-law biased by flyway direction kernel is the best kernel to fit WNV human case data, supporting the hypothesis of long-range WNV transmission is mainly along the migratory bird flyways. Through extensive simulation from 2014 to 2016, we proposed and tested hypothetical mitigation strategies and found that mosquito population reduction in the infected states and neighboring states is potentially cost-effective.


Assuntos
Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Aves/virologia , Culicidae/virologia , Humanos , Modelos Teóricos , Método de Monte Carlo , Mosquitos Vetores , Estados Unidos/epidemiologia , Febre do Nilo Ocidental/embriologia , Febre do Nilo Ocidental/virologia , Zoonoses/epidemiologia
5.
Sci Rep ; 2: 632, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22953053

RESUMO

The spontaneous behavioral responses of individuals to the progress of an epidemic are recognized to have a significant impact on how the infection spreads. One observation is that, even if the infection strength is larger than the classical epidemic threshold, the initially growing infection can diminish as the result of preventive behavioral patterns adopted by the individuals. In order to investigate such dynamics of the epidemic spreading, we use a simple behavioral model coupled with the individual-based SIS epidemic model where susceptible individuals adopt a preventive behavior when sensing infection. We show that, given any infection strength and contact topology, there exists a region in the behavior-related parameter space such that infection cannot survive in long run and is completely contained. Several simulation results, including a spreading scenario in a realistic contact network from a rural district in the State of Kansas, are presented to support our analytical arguments.


Assuntos
Epidemias/prevenção & controle , Comportamentos Relacionados com a Saúde , Modelos Biológicos , Algoritmos , Simulação por Computador , Humanos , Controle de Infecções , Cadeias de Markov , Método de Monte Carlo , População Rural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA