Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Xenobiot ; 14(1): 285-294, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38535492

RESUMO

Nanobiomaterials (NBMs) have tremendous potential applications including in cancer diagnosis and treatment. However, the health and environmental effects of NBMs must be thoroughly assessed to ensure safety. Fe3O4 (magnetite) nanoparticles coated with polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA) were one of the focus NBMs within the EU project BIORIMA. Fe3O4 PEG-PLGA has been proposed to be used as a contrast agent in magnetic resonance imaging for the identification of solid tumors and has revealed low cytotoxicity in several cell lines. However, the effects of Fe3O4 PEG-PLGA have not been assessed in terrestrial environments, the eventual final sink of most materials. In the present study, the effects of Fe3O4 PEG-PLGA and its precursor, (un-coated) Fe3O4 NMs, were assessed in soil model invertebrates Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). The endpoints were survival, reproduction, and size, based on the standard OECD test (28 days) and its extension (56 days). The results showed no toxicity for any of the endpoints evaluated, indicating that the NBM Fe3O4 PEG-PLGA poses no unacceptable risk to the terrestrial environment.

2.
Integr Environ Assess Manag ; 20(3): 780-793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37563990

RESUMO

The European environmental risk assessment (ERA) of plant protection products follows a tiered approach. The approach for soil invertebrates currently consists of two steps, starting with a Tier 1 assessment based on reproduction toxicity tests with earthworms, springtails, and predatory mites. In case an unacceptable risk is identified at Tier 1, field studies can be conducted as a higher-tier option. For soil invertebrates, intermediate tiers are not implemented. Hence, there is limited possibility to include additional information for the ERA to address specific concerns when the Tier 1 fails, as an alternative to, for example, a field study. Calibrated intermediate-tier approaches could help to address risks for soil invertebrates with less time and resources but also with sufficient certainty. A multistakeholder workshop was held on 2-4 March 2022 to discuss potential intermediate-tier options, focusing on four possible areas: (1) natural soil testing, (2) single-species tests (other than standard species), (3) assessing recovery in laboratory tests, and (4) the use of assembled soil multispecies test systems. The participants acknowledged a large potential in the intermediate-tier options but concluded that some issues need to be clarified before routine application of these approaches in the ERA is possible, that is, sensitivity, reproducibility, reliability, and standardization of potential new test systems. The definition of suitable assessment factors needed to calibrate the approaches to the protection goals was acknowledged. The aims of the workshop were to foster scientific exchange and a data-driven dialog, to discuss how the different approaches could be used in the risk assessment, and to identify research priorities for future work to address uncertainties and strengthen the tiered approach in the ERA for soil invertebrates. This article outlines the background, proposed methods, technical challenges, difficulties and opportunities in the ERA, and conclusions of the workshop. Integr Environ Assess Manag 2024;20:780-793. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

3.
Environ Pollut ; 328: 121669, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080512

RESUMO

Nanoemulsions (NEs) have been extensively studied as carriers for drug delivery, since these provide a good alternative to the existing non-nano systems, while promoting their target delivery and controlled release. NEs are considered safe drug carriers from a pre-clinical perspective, but there is currently no information on their ecotoxicological effects. In the present study we investigated the toxicity of a NE material (lecithin, sunflower oil, borate buffer) designed to be used as a liposomal excipient for eye drops, further referred to as (Lipid Particle:LP) LP_Eye and its dispersant (borate buffer) (LP_Eye disp.). Effects were assessed using two model species in soil ecotoxicology in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola), based on the OECD standard guideline (28 days) and its extension, a longer-term exposure (56 days). The endpoints evaluated included survival, reproduction, and size. LP_Eye and LP_Eye disp. were toxic to E. crypticus and F. candida, affecting all measured endpoints. The toxicity of LP_Eye in E. crypticus seemed to be induced by the dispersant, whereas for F. candida, more sensitive, this was less explanatory. There were no indications that toxicity increased with longer exposure. Current results provide ecotoxicological data for a group of NMs that was absent, revealing toxicity to relevant environmental species. Indications were that the dispersant contributed to most of the observed effects, thus there is room to improve the formulation and achieve lower environmental impact.


Assuntos
Artrópodes , Besouros , Oligoquetos , Poluentes do Solo , Animais , Boratos , Ecotoxicologia , Solo , Poluentes do Solo/análise , Reprodução
4.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36432346

RESUMO

Developments in the nanotechnology area occur ensuring compliance with regulatory requirements, not only in terms of safety requirements, but also to meet sustainability goals. Hence, safer and sustainable-by-design (SSbD) materials are also aimed for during developmental process. Similar to with any new materials their safety must be assessed. Nanobiomaterials can offer large advantages in the biomedical field, in areas such as tissue repair and regeneration, cancer therapy, etc. For example, although hydroxyapatite-based nanomaterials (nHA) are among the most studied biomaterials, its ecotoxicological effects are mostly unknown. In the present study we investigated the toxicity of seven nHA-based materials, covering both different biomedical applications, e.g., iron-doped hydroxyapatite designed for theragnostic applications), hybrid collagen/hydroxyapatite composites, designed for bone tissue regeneration, and SSbD alternative materials such as titanium-doped hydroxyapatite/alginate composite, designed as sunscreen. The effects were assessed using the soil model Enchytraeus crypticus (Oligochaeta) in the natural standard LUFA 2.2 soil. The assessed endpoints included the 2, 3 and 4 days avoidance behavior (short-term), 28 days survival, size and reproduction (long term based on the OECD standard reproduction test), and 56 days survival and reproduction (longer-term OECD extension). Although overall results showed little to no toxicity among the tested nHA, there was a significant decrease in animals' size for Ti-containing nHA. Moreover, there was a tendency for higher toxicity at the lowest concentrations (i.e., 100 mg/kg). This requires further investigation to ensure safety.

5.
Environ Pollut ; 286: 117571, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34438494

RESUMO

Silver nanomaterials (AgNMs) are broadly used and among the most studied nanomaterials. The underlying molecular mechanisms (e.g. protein and metabolite response) that precede phenotypical effects have been assessed to a much lesser extent. In this paper, we assess differentially expressed proteins (DEPs) and metabolites (DEMs) by high-throughput (HTP) techniques (HPLC-MS/MS with tandem mass tags, reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with mass spectrometric detection). In a time series (0, 7, 14 days), the standard soil model Enchytraeus crypticus was exposed to AgNM300K and AgNO3 at the reproduction EC20 and EC50. The impact on proteins/metabolites was clearly larger after 14 days. NM300K caused more upregulated DEPs/DEMs, more so at the EC20, whereas AgNO3 caused a dose response increase of DEPs/DEMs. Similar pathways were activated, although often via opposite regulation (up vs down) of DEPs, hence, dissimilar mechanisms underlie the apical observed impact. Affected pathways included e.g. energy and lipid metabolism and oxidative stress. Uniquely affected by AgNO3 was catalase, malate dehydrogenase and ATP-citrate synthase, and heat shock proteins (HSP70) and ferritin were affected by AgNM300K. The gene expression-based data in Adverse Outcome Pathway was confirmed and additional key events added, e.g. regulation of catalase and heat shock proteins were confirmed to be included. Finally, we observed (as we have seen before) that lower concentration of the NM caused higher biological impact. Data was deposited to ProteomeXchange, identifier PXD024444.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Poluentes do Solo , Íons , Metabolômica , Nanopartículas Metálicas/toxicidade , Nanoestruturas/toxicidade , Proteômica , Prata/toxicidade , Poluentes do Solo/análise , Espectrometria de Massas em Tandem , Transcriptoma
6.
Environ Pollut ; 256: 113484, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31677872

RESUMO

The widespread production and use of silver nanomaterials (AgNMs) in consumer and medical products have been raising environmental concerns. Once in the environment, the soil is one of the major sinks of AgNMs due to e.g. sewage sludge applications, and invertebrates are directly exposed. In this study, we investigate the potential of N-acetylcysteine (NAC) to reduce the toxic effects of Ag NM300 K (and AgNO3) on the soil invertebrate Enchytraeus crypticus. Ag NM300 K induces mortality, reproduction impairment, and avoidance. The addition of NAC to the soil showed a remarkable reduction in the toxicity of Ag, indicating that NAC can act as a detoxifying agent for terrestrial organisms exposed to Ag materials. That the reduction in toxicity likely is caused by thiol groups, was confirmed by GSH and GSSH studies. Identifying the mechanisms and hence alternatives that allow the recovery of contaminated soils is an important mitigation measure to promote environmental safety and reduce the associated risks to human health. Further, it may inform on strategies to implement in safe-by-design industry development.


Assuntos
Nanoestruturas/toxicidade , Oligoquetos/fisiologia , Prata/toxicidade , Poluentes do Solo/toxicidade , Acetilcisteína/metabolismo , Animais , Oligoquetos/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Esgotos , Nitrato de Prata/toxicidade , Solo , Poluentes do Solo/análise
7.
Nanoscale ; 10(46): 21985-21993, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30452031

RESUMO

In the search for novel tools to combat cancer, nanoparticles (NPs) have attracted a lot of attention. Recently, the controlled release of cancer-cell-killing metal ions from doped NPs has shown promise, but fine tuning of dissolution kinetics is required to ensure specificity and minimize undesirable toxic side-effects. Theoretical tools to help in reaching a proper understanding and finally be able to control the dissolution kinetics by NP design have not been available until now. Here, we present a novel set of true nanodescriptors to analyze the charge distribution, the effect of doping and surface coating of whole metal oxide NP structures. The polarizable model of oxygen atoms enables light to be shed on the charge distribution on the NP surface, allowing the in detail study of the factors influencing the release of metal ions from NPs. The descriptors and their capabilities are demonstrated on a Fe-doped ZnO nanoparticle system, a system with practical outlook and available experimental data.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Óxido de Zinco/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Humanos , Nanopartículas Metálicas/toxicidade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29048395

RESUMO

An Environmental Risk Assessment (ERA) for nanomaterials (NMs) is outlined in this paper. Contrary to other recent papers on the subject, the main data requirements, models and advancement within each of the four risk assessment domains are described, i.e., in the: (i) materials, (ii) release, fate and exposure, (iii) hazard and (iv) risk characterisation domains. The material, which is obviously the foundation for any risk assessment, should be described according to the legislatively required characterisation data. Characterisation data will also be used at various levels within the ERA, e.g., exposure modelling. The release, fate and exposure data and models cover the input for environmental distribution models in order to identify the potential (PES) and relevant exposure scenarios (RES) and, subsequently, the possible release routes, both with regard to which compartment(s) NMs are distributed in line with the factors determining the fate within environmental compartment. The initial outcome in the risk characterisation will be a generic Predicted Environmental Concentration (PEC), but a refined PEC can be obtained by applying specific exposure models for relevant media. The hazard information covers a variety of representative, relevant and reliable organisms and/or functions, relevant for the RES and enabling a hazard characterisation. The initial outcome will be hazard characterisation in test systems allowing estimating a Predicted No-Effect concentration (PNEC), either based on uncertainty factors or on a NM adapted version of the Species Sensitivity Distributions approach. The risk characterisation will either be based on a deterministic risk ratio approach (i.e., PEC/PNEC) or an overlay of probability distributions, i.e., exposure and hazard distributions, using the nano relevant models.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/efeitos adversos , Nanoestruturas/efeitos adversos , Medição de Risco/métodos , Humanos
9.
Environ Toxicol Chem ; 36(11): 2934-2941, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488336

RESUMO

Nanoparticles (NPs) such as nickel (Ni) are widely used in several applications. Nevertheless, the environmental effects of Ni NPs are still poorly understood. In the present study, the toxicity of Ni NPs and nickel nitrate (NiNO3 ) was assessed using the standard test species in soil ecotoxicology, Enchytraeus crypticus (Oligochaeta), in a full life cycle test, adding the endpoints hatching, growth, and time to reach maturity, besides survival and reproduction as in the standard Organisation for Economic Co-operation and Development Guideline 220 and/or International Organization for Standardization 16387. For Ni NPs, the Ni in soil and in soil solution was concentration- and time-dependent, with a relatively higher soil solution content in the lower and shorter exposure concentrations and times. Overall, NiNO3 was more toxic than Ni NPs, and toxicity seemed to occur via different mechanisms. The former caused reduced hatching (50% effect concentration [EC50] = 39 mg Ni/kg soil), and the negative effects remained throughout the life cycle, in all measured endpoints (growth, maturation, survival, and reproduction). For Ni NPs, hatching was the most sensitive endpoint (EC50 = 870 mg Ni/kg soil), although the organisms recovered; that is, additional endpoints across the life cycle showed that this effect corresponded to a delay in hatching because organisms survived and reproduced at concentrations up to 1800 mg Ni/kg soil. On the other hand, the lowest tested concentration of Ni NPs (100 mg Ni/kg soil) caused reproduction effects similar to those at higher concentrations (1000 and 1800 mg Ni/kg soil). The present results show that the potential implications of a nonmonotonic dose response should be considered when assessing the risks of Ni NP exposure in soil. Environ Toxicol Chem 2017;36:2934-2941. © 2017 SETAC.


Assuntos
Nanopartículas Metálicas/toxicidade , Níquel/química , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Dose Letal Mediana , Estágios do Ciclo de Vida/efeitos dos fármacos , Nanopartículas Metálicas/química , Oligoquetos/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Poluentes do Solo/química , Testes de Toxicidade
10.
Nanotoxicology ; 10(10): 1442-1447, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27592624

RESUMO

Regulatory ecotoxicity testing of chemicals is of societal importance and a large effort is undertaken at the OECD to ensure that OECD test guidelines (TGs) for nanomaterials (NMs) are available. Significant progress to support the adaptation of selected TGs to NMs was achieved in the context of the project MARINA ( http://www.marina-fp7.eu/ ) funded within the 7th European Framework Program. Eight OECD TGs were adapted based on the testing of at least one ion-releasing NM (Ag) and two inert NMs (TiO2). With the materials applied, two main variants of NMs (ion releasing vs. inert NMs) were addressed. As the modifications of the test guidelines refer to general test topics (e.g. test duration or measuring principle), we assume that the described approaches and modifications will be suitable for the testing of further NMs with other chemical compositions. Firm proposals for modification of protocols with scientific justification(s) are presented for the following tests: growth inhibition using the green algae Raphidocelis subcapitata (formerly: Pseudokirchneriella subcapitata; TG 201), acute toxicity with the crustacean Daphnia magna (TG 202), development toxicity with the fish Danio rerio (TG 210), reproduction of the sediment-living worm Lumbriculus variegatus (TG 225), activity of soil microflora (TGs 216, 217), and reproduction of the invertebrates (Enchytraeus crypticus, Eisenia fetida, TGs 220, 222). Additionally, test descriptions for two further test systems (root elongation of plants in hydroponic culture; test on fish cells) are presented. Ecotoxicological data obtained with the modified test guidelines for TiO2 NMs and Ag NM and detailed method descriptions are available.


Assuntos
Ecotoxicologia , Poluentes Ambientais/toxicidade , Guias como Assunto , Nanoestruturas/toxicidade , Prata/toxicidade , Titânio/toxicidade , Testes de Toxicidade/normas , Animais , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecotoxicologia/legislação & jurisprudência , Ecotoxicologia/métodos , Política Ambiental , Nanopartículas/química , Nanopartículas/toxicidade , Nanoestruturas/química , Organização para a Cooperação e Desenvolvimento Econômico , Prata/química , Titânio/química , Testes de Toxicidade/métodos
11.
Environ Int ; 95: 36-53, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27523267

RESUMO

Commercialization of nanotechnologies entails a regulatory requirement for understanding their environmental, health and safety (EHS) risks. Today we face challenges to assess these risks, which emerge from uncertainties around the interactions of manufactured nanomaterials (MNs) with humans and the environment. In order to reduce these uncertainties, it is necessary to generate sound scientific data on hazard and exposure by means of relevant frameworks and tools. The development of such approaches to facilitate the risk assessment (RA) of MNs has become a dynamic area of research. The aim of this paper was to review and critically analyse these approaches against a set of relevant criteria. The analysis concluded that none of the reviewed frameworks were able to fulfill all evaluation criteria. Many of the existing modelling tools are designed to provide screening-level assessments rather than to support regulatory RA and risk management. Nevertheless, there is a tendency towards developing more quantitative, higher-tier models, capable of incorporating uncertainty into their analyses. There is also a trend towards developing validated experimental protocols for material identification and hazard testing, reproducible across laboratories. These tools could enable a shift from a costly case-by-case RA of MNs towards a targeted, flexible and efficient process, based on grouping and read-across strategies and compliant with the 3R (Replacement, Reduction, Refinement) principles. In order to facilitate this process, it is important to transform the current efforts on developing databases and computational models into creating an integrated data and tools infrastructure to support the risk assessment and management of MNs.


Assuntos
Nanoestruturas/efeitos adversos , Medição de Risco/métodos , Simulação por Computador , Meio Ambiente , Saúde Ambiental , Humanos , Nanotecnologia , Gestão de Riscos
12.
Environ Pollut ; 218: 1370-1375, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26549753

RESUMO

Engineered Nanoparticles (ENPs) present novel/added challenges to the established effect assessment modus operandi, requiring an update of used methods. ENPs are dimensionally and physically different from conventional chemicals, which imply that the metrics with which we relate effect and the type of effect responses are different from that of the conventional approach. Effects on organisms are often preceded by changes on the sub-organismal level (cell, genes), dedicated tools have vast potential to detect earlier (and link to) effects on higher levels of organization. High-throughput screening (HTS) is rapid, cost-effective and specific. One way forward is to link HTS to population outcomes, targeting a systems toxicology approach. Although the benefits of integrating various levels of information may seem obvious, this is an even more decisive aspect when rapid answers are needed for ENPs. Here we rank the available tools/methods, highlight main study gaps and list priority needs and the way forward.


Assuntos
Poluição Ambiental/prevenção & controle , Ensaios de Triagem em Larga Escala/métodos , Nanopartículas/efeitos adversos , Biologia de Sistemas/métodos , Animais , Humanos , Nanopartículas/química
13.
Environ Pollut ; 218: 1363-1364, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26700181

RESUMO

There is an urgent need for sufficient knowledge to allow reliable assessment of the risks associated with engineered nanomaterials (ENPs). Significant advances in basic understanding of nano safety have been made, but there is still no clear systematic basis for risk-related research, and major uncertainties remain in the absence of uniform procedures. The following papers provide the guidance on how to proceed within the area of fate and hazard assessment, and how this links into grouping, testing and risk assessment of nanomaterials. This guidance is coupled with an industrial view on the most important research areas for nanomaterials.


Assuntos
Nanoestruturas/efeitos adversos , Medição de Risco/métodos , Exposição Ambiental/efeitos adversos , Humanos
14.
Int J Environ Res Public Health ; 12(12): 15007-21, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26633430

RESUMO

An engineered nanomaterial (ENM) may actually consist of a population of primary particles, aggregates and agglomerates of various sizes. Furthermore, their physico-chemical characteristics may change during the various life-cycle stages. It will probably not be feasible to test all varieties of all ENMs for possible health and environmental risks. There is therefore a need to further develop the approaches for risk assessment of ENMs. Within the EU FP7 project Managing Risks of Nanoparticles (MARINA) a two-phase risk assessment strategy has been developed. In Phase 1 (Problem framing) a base set of information is considered, relevant exposure scenarios (RESs) are identified and the scope for Phase 2 (Risk assessment) is established. The relevance of an RES is indicated by information on exposure, fate/kinetics and/or hazard; these three domains are included as separate pillars that contain specific tools. Phase 2 consists of an iterative process of risk characterization, identification of data needs and integrated collection and evaluation of data on the three domains, until sufficient information is obtained to conclude on possible risks in a RES. Only data are generated that are considered to be needed for the purpose of risk assessment. A fourth pillar, risk characterization, is defined and it contains risk assessment tools. This strategy describes a flexible and efficient approach for data collection and risk assessment which is essential to ensure safety of ENMs. Further developments are needed to provide guidance and make the MARINA Risk Assessment Strategy operational. Case studies will be needed to refine the strategy.


Assuntos
Exposição Ambiental/efeitos adversos , Nanopartículas/efeitos adversos , Nanoestruturas/efeitos adversos , Medição de Risco/métodos , Gestão de Riscos/métodos , Coleta de Dados , Humanos , Modelos Teóricos
15.
Int J Environ Res Public Health ; 12(10): 13415-34, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26516872

RESUMO

Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.


Assuntos
Nanoestruturas/toxicidade , Meio Ambiente , Humanos , Medição de Risco/métodos , Segurança
16.
Nanotoxicology ; 8(3): 334-48, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23641967

RESUMO

Bringing together topic-related European Union (EU)-funded projects, the so-called "NanoSafety Cluster" aims at identifying key areas for further research on risk assessment procedures for nanomaterials (NM). The outcome of NanoSafety Cluster Working Group 10, this commentary presents a vision for concern-driven integrated approaches for the (eco-)toxicological testing and assessment (IATA) of NM. Such approaches should start out by determining concerns, i.e., specific information needs for a given NM based on realistic exposure scenarios. Recognised concerns can be addressed in a set of tiers using standardised protocols for NM preparation and testing. Tier 1 includes determining physico-chemical properties, non-testing (e.g., structure-activity relationships) and evaluating existing data. In tier 2, a limited set of in vitro and in vivo tests are performed that can either indicate that the risk of the specific concern is sufficiently known or indicate the need for further testing, including details for such testing. Ecotoxicological testing begins with representative test organisms followed by complex test systems. After each tier, it is evaluated whether the information gained permits assessing the safety of the NM so that further testing can be waived. By effectively exploiting all available information, IATA allow accelerating the risk assessment process and reducing testing costs and animal use (in line with the 3Rs principle implemented in EU Directive 2010/63/EU). Combining material properties, exposure, biokinetics and hazard data, information gained with IATA can be used to recognise groups of NM based upon similar modes of action. Grouping of substances in return should form integral part of the IATA themselves.


Assuntos
Nanoestruturas , Medição de Risco , Testes de Toxicidade , Animais , Linhagem Celular , União Europeia , Humanos , Nanoestruturas/normas , Nanoestruturas/toxicidade
17.
Environ Toxicol Chem ; 25(11): 3078-81, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17089735

RESUMO

In recent years, the inclusion of uncertainty analysis in risk assessment has been much debated. One pertinent issue is the translation of the effects observed with a limited number of test species to a general protection level for most or all species present in the environment. In a number of cases, toxicity data may consist of data from tests employing only a control and one treatment. Given that more species (or processes) have been tested with the same treatment, the treatment can be considered as fixed, and the effect level of the individual species (or processes) can be considered as variable. The distribution of effects can be viewed as a species effect distribution for that treatment. The distribution will represent all organisms and may be used to predict the maximum impact on any fraction of all organisms (e.g., 95% of all species). Hence, it is possible to predict the maximum effect level, with a selected certainty, for a given fraction of all species.


Assuntos
Modelos Biológicos , Medição de Risco , Animais , Especificidade da Espécie , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA