Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Pharmacol Toxicol Methods ; 99: 106583, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31082488

RESUMO

INTRODUCTION: In recent years, new psychoactive substances (NPS) have been widely distributed for abuse purposes. Effective measures to counter the spread of NPS are to promptly legislate them through the risk assessment. Phencyclidine analogues having inhibitory effects toward NMDA receptor (NMDAR) have recently emerged in Japan. Therefore, it is important to establish a high-throughput system for efficiently detecting NPS that can inhibit NMDAR activity. METHODS: Hippocampal neurons prepared from embryonic rats were incubated in 96-well microplates. After 3 weeks in vitro, cultured neurons were preincubated with phencyclidine (PCP) or PCP-analogues, including 3-methoxyphencyclidine (3-MeO-PCP) and 4-[1-(3-methoxyphenyl)cyclohexyl]morpholine (3-MeO-PCMo), and then treated with 100 µM glutamate for 10 min. After fixation, cultured neurons were immunostained with anti-drebrin and anti-MAP2 antibodies. The linear cluster density of drebrin along the dendrites was automatically quantified using a protocol that was originally developed by us. RESULTS: The high-throughput immunocytochemical assay, measuring drebrin cluster density of cultured neurons, demonstrated that glutamate-induced reduction of drebrin cluster density in 96-well plates is competitively inhibited by NMDAR antagonist, APV. The reduction was also antagonized by PCP, 3-MeO-PCP and 3-MeO-PCMo. The inhibitory activity of 3-MeO-PCMo was lower than that of PCP or 3-MeO-PCP, with IC50 values of 26.67 µM (3-MeO-PCMo), 2.02 µM (PCP) and 1.51 µM (3-MeO-PCP). DISCUSSION: The relative efficacy among PCP, 3-MeO-PCP and 3-MeO-PCMo calculated from IC50 are similar to those from Ki values. This suggests that the high-throughput imaging analysis is useful to speculate the Ki values of new PCP analogues without performing the kinetic studies.

2.
Cell Rep ; 24(13): 3582-3592, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30257217

RESUMO

To assess the utility of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) as an in vitro proarrhythmia model, we evaluated the concentration dependence and sources of variability of electrophysiologic responses to 28 drugs linked to low, intermediate, and high torsades de pointes (TdP) risk categories using two commercial cell lines and standardized protocols in a blinded multisite study using multielectrode array or voltage-sensing optical approaches. Logistical and ordinal linear regression models were constructed using drug responses as predictors and TdP risk categories as outcomes. Three of seven predictors (drug-induced arrhythmia-like events and prolongation of repolarization at either maximum tested or maximal clinical exposures) categorized drugs with reasonable accuracy (area under the curve values of receiver operator curves ∼0.8). hiPSC-CM line, test site, and platform had minimal influence on drug categorization. These results demonstrate the utility of hiPSC-CMs to detect drug-induced proarrhythmic effects as part of the evolving Comprehensive In Vitro Proarrhythmia Assay paradigm.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Eletrofisiologia/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Cardiotoxicidade , Linhagem Celular , Reprogramação Celular , Avaliação Pré-Clínica de Medicamentos/normas , Eletrofisiologia/normas , Humanos , Potenciais da Membrana/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia
3.
J Pharmacol Sci ; 134(2): 75-85, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28615142

RESUMO

Human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes hold great potentials to predict pro-arrhythmic risks in preclinical cardiac safety screening, although the hiPSC cardiomyocytes exhibit rather immature functional and structural characteristics, including spontaneous activity. Our physiological characterization and mathematical simulation showed that low expression of the inward-rectifier potassium (IK1) channel is a determinant of spontaneous activity. To understand impact of the low IK1 expression on the pharmacological properties, we tested if transduction of hiPSC-derived cardiomyocytes with KCNJ2, which encodes the IK1 channel, alters pharmacological response to cardiac repolarization processes. The transduction of KCNJ2 resulted in quiescent hiPSC-derived cardiomyocytes, which need pacing to elicit action potentials. Significant prolongation of paced action potential duration in KCNJ2-transduced hiPSC-derived cardiomyocytes was stably measured at 0.1 µM E-4031, although the same concentration of E-4031 ablated firing of non-treated hiPSC-derived cardiomyocytes. These results in single cells were confirmed by mathematical simulations. Using the hiPSC-derived cardiac sheets with KCNJ2-transduction, we also investigated effects of a range of drugs on field potential duration recorded at 1 Hz. The KCNJ2 overexpression in hiPSC-derived cardiomyocytes may contribute to evaluate a part of QT-prolonging drugs at toxicological concentrations with high accuracy.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Bloqueadores dos Canais de Potássio/efeitos adversos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potenciais de Ação/efeitos dos fármacos , Arritmias Cardíacas/induzido quimicamente , Avaliação Pré-Clínica de Medicamentos/métodos , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/efeitos adversos , Piridinas/efeitos adversos
4.
J Pharmacol Toxicol Methods ; 84: 111-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27956204

RESUMO

INTRODUCTION: Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are anticipated to be a useful tool for conducting proarrhythmia risk assessments of drug candidates. However, a torsadogenic risk prediction paradigm using hiPSC-CMs has not yet been fully established. METHODS: Extracellular field potentials (FPs) were recorded from hiPSC-CMs using the multi-electrode array (MEA) system. The effects on FPs were evaluated with 60 drugs, including 57 with various clinical torsadogenic risks. Actual drug concentrations in medium were measured using the equilibrium dialysis method with a Rapid Equilibrium Dialysis device. Relative torsade de pointes (TdP) scores were determined for each drug according to the degree of FP duration prolongation and early afterdepolarization occurrence. The margins were calculated from the free concentration in medium and free effective therapeutic plasma concentration. Each drug's results were plotted on a two-dimensional map of relative TdP risk scores versus margins. RESULTS: Each drug was categorised as high, intermediate, or low risk based on its location within predefined areas of the two-dimensional map. We categorised 19 drugs as high risk; 18 as intermediate risk; and 17 as low risk. We examined the concordance between our categorisation of high and low risk drugs against the torsadogenic risk categorisation in CredibleMeds®. Our system demonstrated high concordance, as reflected in a sensitivity of 81%, specificity of 87%, and accuracy of 83%. DISCUSSION: These results indicate that our torsadogenic risk assessment is reliable and has a potential to replace the hERG assay for torsadogenic risk prediction, however, this system needs to be improved for the accurate of prediction of clinical TdP risk. Here, we propose a novel drug induced torsadogenic risk categorising system using hiPSC-CMs and the MEA system.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Cardiotoxinas/toxicidade , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Torsades de Pointes/induzido quimicamente , Potenciais de Ação/fisiologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/fisiologia , Medição de Risco , Torsades de Pointes/patologia , Torsades de Pointes/fisiopatologia
5.
PLoS One ; 11(12): e0167348, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27923051

RESUMO

The aims of this study were to (1) characterize basic electrophysiological elements of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that correspond to clinical properties such as QT-RR relationship, (2) determine the applicability of QT correction and analysis methods, and (3) determine if and how these in-vitro parameters could be used in risk assessment for adverse drug-induced effects such as Torsades de pointes (TdP). Field potential recordings were obtained from commercially available hiPSC-CMs using multi-electrode array (MEA) platform with and without ion channel antagonists in the recording solution. Under control conditions, MEA-measured interspike interval and field potential duration (FPD) ranged widely from 1049 to 1635 ms and from 334 to 527 ms, respectively and provided positive linear regression coefficients similar to native QT-RR plots obtained from human electrocardiogram (ECG) analyses in the ongoing cardiovascular-based Framingham Heart Study. Similar to minimizing the effect of heart rate on the QT interval, Fridericia's and Bazett's corrections reduced the influence of beat rate on hiPSC-CM FPD. In the presence of E-4031 and cisapride, inhibitors of the rapid delayed rectifier potassium current, hiPSC-CMs showed reverse use-dependent FPD prolongation. Categorical analysis, which is usually applied to clinical QT studies, was applicable to hiPSC-CMs for evaluating torsadogenic risks with FPD and/or corrected FPD. Together, this results of this study links hiPSC-CM electrophysiological endpoints to native ECG endpoints, demonstrates the appropriateness of clinical analytical practices as applied to hiPSC-CMs, and suggests that hiPSC-CMs are a reliable models for assessing the arrhythmogenic potential of drug candidates in human.


Assuntos
Cromanos/farmacologia , Cisaprida/farmacologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Miócitos Cardíacos/citologia , Piperidinas/farmacologia , Piridinas/farmacologia , Sulfonamidas/farmacologia , Células Cultivadas , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Modelos Lineares , Modelos Cardiovasculares , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/fisiopatologia
6.
J Pharmacol Sci ; 124(4): 494-501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24694996

RESUMO

A prospective comparison study across 3 independent research laboratories of a pure IKr blocker E-4031 was conducted by using the same batch of human iPS cell-derived cardiomyocytes in order to verify the utility and reliability of our original standard protocol. Field potential waveforms were recorded with a multi-electrode array system to measure the inter-spike interval and field potential duration. The effects of E-4031 at concentrations of 1 to 100 nM were sequentially examined every 10 min. In each facility, E-4031 significantly prolonged the field potential duration corrected by Fridericia's formula and caused early afterdepolarizations occasionally resulting in triggered activities, whereas it tended to decrease the rate of spontaneous contraction. These results were qualitatively and quantitatively consistent with previous non-clinical in vitro and in vivo studies as well as clinical reports. There were inter-facility differences in some absolute values of the results, which were not observed when the values were normalized as percentage change. Information described in this paper may serve as a guide when predicting the drug-induced repolarization delay and arrhythmias with this new technology of stem cells.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Arritmias Cardíacas/induzido quimicamente , Técnicas Eletrofisiológicas Cardíacas/métodos , Frequência Cardíaca/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos/citologia , Piperidinas/farmacologia , Piridinas/farmacologia , Animais , Arritmias Cardíacas/fisiopatologia , Células Cultivadas , Depressão Química , Relação Dose-Resposta a Droga , Humanos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA