Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(6): 3606-3617, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37235768

RESUMO

Wound infections with antibiotic-resistant bacteria, particularly the Gram-negative strains, pose a substantial health risk for patients with limited treatment options. Recently topical administration of gaseous ozone and its combination with antibiotics through portable systems has been demonstrated to be a promising approach to eradicate commonly found Gram-negative strains of bacteria in wound infections. However, despite the significant impact of ozone in treating the growing number of antibiotic-resistant infections, uncontrolled and high concentrations of ozone can cause damage to the surrounding tissue. Hence, before such treatments could advance into clinical usage, it is paramount to identify appropriate levels of topical ozone that are effective in treating bacterial infections and safe for use in topical administration. To address this concern, we have conducted a series of in vivo studies to evaluate the efficacy and safety of a portable and wearable adjunct ozone and antibiotic wound therapy system. The concurrent ozone and antibiotics are applied through a wound interfaced gas permeable dressing coated with water-soluble nanofibers containing vancomycin and linezolid (traditionally used to treat Gram-positive infections) and connected to a portable ozone delivery system. The bactericidal properties of the combination therapy were evaluated on an ex vivo wound model infected with Pseudomonas aeruginosa, a common Gram-negative strain of bacteria found in many skin infections with high resistance to a wide range of currently available antibiotics. The results indicated that the optimized combination delivery of ozone (4 mg h-1) and topical antibiotic (200 µg cm-2) provided complete bacteria eradication after 6 h of treatment while having minimum cytotoxicity to human fibroblast cells. Furthermore, in vivo local and systemic toxicity studies (e.g., skin monitoring, skin histopathology, and blood analysis) on pig models showed no signs of adverse effects of ozone and antibiotic combination therapy even after 5 days of continuous administration. The confirmed efficacy and biosafety profile of the adjunct ozone and antibiotic therapy places it as a strong candidate for treating wound infection with antimicrobial-resistant bacteria and further pursuing human clinical trials.


Assuntos
Antibacterianos , Infecção dos Ferimentos , Humanos , Animais , Suínos , Antibacterianos/efeitos adversos , Linezolida/farmacologia , Linezolida/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
2.
Vet Microbiol ; 140(3-4): 392-8, 2010 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19604656

RESUMO

Brucellosis, especially caused by Brucella melitensis, remains one of the most common zoonotic diseases worldwide with more than 500,000 human cases reported annually. The bacterial pathogen is classified by the CDC as a category (B) pathogen that has potential for development as a bio-weapon. Brucella spp. are considered as the most common laboratory-acquired pathogens. The geographical distribution of brucellosis is constantly changing with new foci emerging or re-emerging. The disease occurs worldwide in both animals and humans, except in those countries where bovine brucellosis has been eradicated. The worldwide economic losses due to brucellosis are extensive not only in animal production but also in human health. Although a number of successful vaccines are being used for immunization of animals, no satisfactory vaccine against human brucellosis is available. When the incidence of brucellosis is controlled in the animal reservoirs, there is a corresponding and significant decline in the incidence in humans.


Assuntos
Brucella melitensis/isolamento & purificação , Brucelose/epidemiologia , Brucelose/veterinária , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/veterinária , Animais , Vacina contra Brucelose/imunologia , Brucelose/economia , Brucelose/prevenção & controle , Doenças Transmissíveis Emergentes/economia , Doenças Transmissíveis Emergentes/microbiologia , Humanos , Incidência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA