Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 263: 128071, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297075

RESUMO

Pomegranate peel, a major waste from the food processing industries containing biologically active compounds, could be converted into value-added products having medicinal properties. Present study deals with the ultrasound-assisted surfactant, namely dimethyl sulfoxide (DMSO) aided polyphenolics extraction from pomegranate peel waste using double distilled water (DDW) as a solvent. Maximum total yield of extraction and total polyphenolic content (TPC) were found respectively to be 43.58 ± 1.0 and 49.55 ± 0.8%, at optimized sonication parameters viz. temperature 50 °C, power density 1.2 W/mL and time 40 min followed by surfactant aided extraction under optimum conditions 0.6% DMSO, 50 °C and 150 rpm for 90 min. Kinetic models were developed to determine the polyphenolics concentration and validated. GC-MS analysis of the extract revealed 22 phenolic compounds. Thus, the acquired results have ensured the significance of ultrasound pre-treated surfactant aided extraction of polyphenolic compounds and this process can be developed for commercial production.


Assuntos
Frutas , Polifenóis , Dimetil Sulfóxido , Frutas/química , Extratos Vegetais , Polifenóis/análise , Tensoativos , Água
2.
Appl Biochem Biotechnol ; 186(3): 731-749, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29728962

RESUMO

The economical production of lipids is considered as an appropriate renewable alternative feedstock for biodiesel production because of the contemporary concerns on fuel crisis, climate change and food security. In this study, lipid accumulation potential of a novel oleaginous yeast isolate Naganishia liquefaciens NITTS2 by utilizing pre-digested municipal waste activated sludge (PWAS) was explored. Optimization of culture conditions was performed using response surface methodology coupled with genetic algorithm and maximum lipid content of 55.7% was obtained. The presence of lipid was visually confirmed by fluorescence microscopy and its characteristic profile was determined by GC-MS. The yeast lipid was recovered and converted into biodiesel by garbage lipase with the efficiency of 88.34 ± 1.2%, which was further analyzed by proton nuclear magnetic resonance spectroscopy. Hence, the results of this study strongly suggest the possibility of using PWAS as an efficient and low-cost resource for the production of biodiesel from the oleaginous yeast.


Assuntos
Basidiomycota/metabolismo , Biocombustíveis , Metabolismo dos Lipídeos , Eliminação de Resíduos , Esgotos , Algoritmos , Basidiomycota/classificação , Meios de Cultura , Esterificação , Cromatografia Gasosa-Espectrometria de Massas , Microscopia de Fluorescência , Filogenia
3.
J Adv Res ; 8(6): 561-568, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28765792

RESUMO

This study was focused on the synthesis of silver nanoparticles using Acalypha hispida leaf extract and the characterization of the particles using UV-Vis spectroscopy, XRD, FT-IR, and TEM. The results showed the formation of silver nanoparticles, crystalline in nature, with an average size of 20-50 nm. The leaf extract components were analyzed with GC-MS and exhibited a high content of Phytol (40.52%), n-Hexadecanoic acid (9.67%), 1,2,3-Benzenetriol (7.04%), α-d-Mannofuranoside methyl (6.22%), and d-Allose (4.45%). The optimization and statistical investigation of reaction parameters were studied and maximum yield with suitable properties of silver nanoparticles was obtained at leaf extract volume (0.5 mL), the concentration of silver nitrate (1.75 mM), and reaction temperature (50 °C). The method of detecting Mn2+ ions using the colloidal silver nanoparticles was discussed. The minimum and maximum detection limit were found to be 50 and 200 µM of Mn(II) ions, respectively. Thus, the obtained results encourage the use of economical synthesis of silver nanoparticles in the development of nanosensors to detect the pollutants present in industrial effluents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA