Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Comput Toxicol ; 222022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844258

RESUMO

Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.

2.
Regul Toxicol Pharmacol ; 131: 105167, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35413399

RESUMO

DL-glufosinate ammonium (DL-GLF) is a registered herbicide for which a guideline Developmental Neurotoxicity (DNT) study has been conducted. Offspring effects included altered brain morphometrics, decreased body weight, and increased motor activity. Guideline DNT studies are not available for its enriched isomers L-GLF acid and L-GLF ammonium; conducting one would be time consuming, resource-intensive, and possibly redundant given the existing DL-GLF DNT. To support deciding whether to request a guideline DNT study for the L-GLF isomers, DL-GLF and the L-GLF isomers were screened using in vitro assays for network formation and neurite outgrowth. DL-GLF and L-GLF isomers were without effects in both assays. DL-GLF and L-GLF (1-100 µM) isomers increased mean firing rate of mature networks to 120-140% of baseline. In vitro toxicokinetic assessments were used to derive administered equivalent doses (AEDs) for the in vitro testing concentrations. The AED for L-GLF was ∼3X higher than the NOAEL from the DL-GLF DNT indicating that the available guideline study would be protective of potential DNT due to L-GLF exposure. Based in part on the results of these in vitro studies, EPA is not requiring L-GLF isomer guideline DNT studies, thereby providing a case study for a useful application of DNT screening assays.


Assuntos
Síndromes Neurotóxicas , Praguicidas , Aminobutiratos/toxicidade , Humanos , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/etiologia , Toxicocinética
3.
Toxicol Sci ; 167(1): 45-57, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30476307

RESUMO

The Organisation for Economic Co-Operation and Development (OECD) coordinates international efforts to enhance developmental neurotoxicity (DNT) testing. In most regulatory sectors, including the ones dealing with pesticides and industrial chemicals registration, historical use of the in vivo DNT test guideline has been limited. Current challenges include a lack of DNT data and mechanistic information for thousands of chemicals, and difficulty in interpreting results. A series of workshops in the last decade has paved the way for a consensus among stakeholders that there is need for a DNT testing battery that relies on in vitro endpoints (proliferation, differentiation, synaptogenesis, etc.) and is complemented by alternative species (eg, zebrafish) assays. Preferably, a battery of in vitro and alternative assays should be anchored toward mechanistic relevance for applying an integrated approach for testing and assessment (IATA) framework. Specific activities have been initiated to facilitate this OECD project: the collation of available DNT in vitro methods and their scoring for readiness; the selection of these methods to form a DNT testing battery; the generation of a reference set of chemicals that will be tested using the battery; the case studies exemplifying how DNT in vitro data can be interpreted; and the development of an OECD guidance document. This manuscript highlights these international efforts and activities.


Assuntos
Alternativas aos Testes com Animais , Guias como Assunto , Síndromes Neurotóxicas/etiologia , Sociedades Científicas , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais/legislação & jurisprudência , Animais , Consenso , Programas Governamentais , Regulamentação Governamental , Humanos , Organização para a Cooperação e Desenvolvimento Econômico , Formulação de Políticas
4.
Front Neuroeng ; 4: 1, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21270946

RESUMO

Because the Developmental Neurotoxicity Testing Guidelines require large numbers of animals and is expensive, development of in vitro approaches to screen chemicals for potential developmental neurotoxicity is a high priority. Many proposed approaches for screening are biochemical or morphological, and do not assess function of neuronal networks. In this study, microelectrode arrays (MEAs) were used to determine if chemical-induced changes in function could be detected by assessing the development of spontaneous network activity. MEAs record individual action potential spikes as well as groups of spikes (bursts) in neuronal networks, and activity can be assessed repeatedly over days in vitro (DIV). Primary cultures of rat cortical neurons were prepared on MEAs and spontaneous activity was assessed on DIV 2, 6, 9, 13, and 20 to determine the in vitro developmental profile of spontaneous spiking and bursting in cortical networks. In addition, 5 µM of the protein kinase C inhibitor bisindolylmaleamide-1 (Bis-1) was added to MEAs (n = 9-18) on DIV 5 to determine if changes in spontaneous activity could be detected in response to inhibition of neurite outgrowth. A clear profile of in vitro activity development occurred in control MEAs, with the number of active channels increasing from 0/MEA on DIV 2 to 37 ± 5/MEA by DIV 13; the rate of increase was most rapid between DIV 6 and 9, and activity declined by DIV 20. A similar pattern was observed for the number of bursting channels, as well as the total number of bursts. Bis-1 decreased the number of active channels/MEA and the number of bursting channels/MEA. Burst characteristics, such as burst duration and the number of spikes in a burst, were unchanged by Bis-1. These results demonstrate that MEAs can be used to assess the development of functional neuronal networks in vitro, as well as chemical-induced dysfunction.

5.
Toxicol Sci ; 105(1): 106-18, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18539913

RESUMO

Identification of chemicals that pose a hazard to the developing nervous system is the first step in reducing human exposure and preventing health risks to infants and children. In response to the need for more efficient methods to identify potential developmental neurotoxicants, the present study evaluated the utility of an automated high content screening system to detect chemical effects on neurite outgrowth in Neuroscreen-1 cells (NS-1), a subclone of PC12 cells. Plating 2000 NS-1 cells per well with 100 ng/ml nerve growth factor for 96 h produced optimal neurite growth in a 96-well format. Using this protocol, five chemicals that had been previously shown to inhibit neurite outgrowth in PC12 cells were examined. Inhibition of neurite outgrowth (assessed as total neurite length per cell) was observed for all five chemicals. For three of the chemicals, inhibition was associated with decreased cell viability. To demonstrate the utility of this approach for screening, a further set of chemicals (eight known in vivo developmental neurotoxicants and eight chemicals with little evidence of in vivo neurotoxicity) were tested over a wide concentration range (1 nM-100 microM). Trans-retinoic acid, dexamethasone, cadmium, and methylmercury inhibited neurite outgrowth, although dexamethasone and cadmium only affected neurite outgrowth at concentrations that decreased viability. Amphetamine facilitated neurite outgrowth, whereas valproic acid, diphenylhydantoin, and lead had no effect. Of the chemicals that were not neurotoxic, there were no effects on cell viability, but two (dimethyl phthalate and omeprazole) increased neurite outgrowth at the highest concentration tested. These results demonstrate that a high content screening system can rapidly quantify chemical effects on neurite outgrowth in vitro. Concentration-response data for both neurite outgrowth and cell viability allowed for the determination of the specificity of chemical effects on a neurodevelopmental endpoint. Further studies will examine the utility of other in vitro preparations for cell-based assays of neurite outgrowth.


Assuntos
Neuritos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Relação Dose-Resposta a Droga , Fator de Crescimento Neural/farmacologia , Neuritos/fisiologia , Células PC12 , Ratos , Fatores de Tempo
6.
Neurotoxicology ; 28(2): 221-6, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16684563

RESUMO

Synthesizing information about the acute neurotoxicity of organic solvents into predictive relationships between exposure and effect in humans is difficult because (1) data are usually derived from experimental animals whose sensitivity to the chemical relative to humans is unknown; (2) the specific endpoints measured in laboratory animals seldom translate into effects of concern in humans; and (3) the mode of action of the chemical is rarely understood. We sought to develop approaches to estimate the hazard and cost of exposure to organic solvents, focusing on the acute behavioral effects of toluene in rats and humans. Available published data include studies of shock avoidance behavior in rats and choice reaction time in humans. A meta-analysis of these data suggested that a 10% change in rat avoidance behavior occurs at a blood concentration of toluene 25 times higher than the concentration at which a 10% change in human choice reaction time occurs. In contrast, our in vitro studies of nicotinic acetylcholine receptors indicated that human and rat receptors do not differ in sensitivity to toluene. Analysis of other dose-response relationships for visual and cognitive functions in rats suggests that the apparent difference between rats and humans may be driven by the specific endpoints measured in the two species rather than by inherent differences in sensitivity to toluene. We also explored the hypothesis that dose-equivalence relationships may be used to compare the societal costs of two chemicals. For example, ethanol-induced changes in choice reaction time, for which societal costs are estimatable, may be used as a benchmark effect for estimating the monetary benefits of controlling exposure to organic solvents. This dose-equivalence method is applicable for solvents because this set of data fulfills three important assumptions about equivalence relationships based on a single effect: (1) a common dose metric (concentration of the chemical in the brain); (2) a common effect to provide a linking variable (choice reaction time); and (3) a common mode of action (interference with neuronal ion channel function).


Assuntos
Comportamento Animal/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Sistema Nervoso Central/efeitos dos fármacos , Síndromes Neurotóxicas/economia , Saúde Pública/economia , Solventes/toxicidade , Testes de Toxicidade Aguda/economia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento de Escolha/efeitos dos fármacos , Cognição/efeitos dos fármacos , Análise Custo-Benefício , Relação Dose-Resposta a Droga , Etanol/toxicidade , Humanos , Metanálise como Assunto , Síndromes Neurotóxicas/etiologia , Tempo de Reação/efeitos dos fármacos , Medição de Risco , Especificidade da Espécie , Tolueno/toxicidade , Vias Visuais/efeitos dos fármacos
7.
Toxicol Appl Pharmacol ; 196(2): 303-18, 2004 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15081275

RESUMO

The Food Quality Protection Act of 1996 requires that the U.S. Environmental Protection Agency conduct cumulative risk assessments for classes of pesticides that have a common mode or mechanism of action. For the pyrethroid insecticides, disruption of voltage-sensitive sodium channel function is generally accepted as the mechanism underlying acute neurotoxicity. However, data exist which suggest that voltage-sensitive calcium (Ca(2+)) channels (VSCC) may also be important targets of pyrethroid action. VSCC are important to neuronal function during development and for neurotransmitter release, gene expression, and electrical excitability in the nervous system. Disruption of these and other processes mediated by VSCC can result in neurotoxicity. If effects on VSCC are demonstrated to contribute to pyrethroid neurotoxicity, then such effects will have to be considered when making decisions regarding cumulative risk of exposure to this class of compounds. This document provides a critical review of the data related to the hypothesis that VSCC are important targets of pyrethroid effects. Data supporting effects of pyrethroids on VSCC have been generated by several different laboratories using different techniques and biological preparations. Thus, the many reports of effects on VSCC provide evidence that pyrethroids may interact with VSCC. However, evidence to support a role of VSCC in pyrethroid neurotoxicity is based entirely on in vitro observations, and numerous limitations exist in these data, including: (1) lack of defined concentration-response relationships, with some effects observed only at relatively high concentrations, (2) the use of indirect measures of VSCC function, (3) data from nonmammalian species, (4) data from studies that have not been peer-reviewed, (5) the need for replication of some effects, and (6) inconsistent or contradictory results from different laboratories/preparations. Thus, at the present time, it is premature to conclude that effects on VSCC play an important role in the acute neurotoxicity of pyrethroid insecticides in mammals. To demonstrate that VSCC are important targets of pyrethroid neurotoxicity in mammals, in vivo studies supporting a role for pyrethroid effects on VSCC are needed. Additional support could be provided by demonstration of direct effects of pyrethroid compounds on mammalian neuronal VSCC in vitro, including demonstration that concentration-response relationships are similar, or greater, in sensitivity to effects of pyrethroids on voltage-sensitive sodium channels. If such effects were to be demonstrated, the rationale for considering VSCC as targets of pyrethroid compounds when assessing cumulative risk would be strengthened. However, at the present time, the data available neither support nor refute conclusively the hypothesis that effects on VSCC are important to the acute neurotoxicity of pyrethroids.


Assuntos
Canais de Cálcio/efeitos dos fármacos , Inseticidas/toxicidade , Síndromes Neurotóxicas/etiologia , Piretrinas/toxicidade , Animais , Canais de Cálcio/fisiologia , Humanos , Inseticidas/metabolismo , Camundongos , Síndromes Neurotóxicas/metabolismo , Piretrinas/metabolismo , Medição de Risco , Estados Unidos , United States Environmental Protection Agency
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA