Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Plant Genome ; 16(1): e20294, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36636827

RESUMO

Chlorophyll is an important plant molecule for absorbing light and transferring electrons to produce energy for photosynthesis, which has a significant impact on crop yield. To identify quantitative trait loci (QTL) controlling chlorophyll traits in wheat (Triticum aestivum L.), a comprehensive meta-analysis of 411 original QTLs for six chlorophyll traits was performed, including the evolution of soil plant analysis development (SPAD), chlorophyll content index (CCI), chlorophyll a content (Chla), chlorophyll b content (Chlb), chlorophyll content (Chl), and ratio of chlorophyll a to b (Chla/b), derived from 41 independent experiments conducted over the past two decades. Fifty-six consensus meta-QTLs (MQTLs) were detected, unevenly distributed on chromosomes 1A, 1B, 2A, 2B, 2D, 3B, 3D, 4B, 4D, 5A, 5D, 6A, 6D, 7B, and 7D. The confidence interval (CI) of the identified MQTLs was 0.18 to 15.07 cM, with an average of 5.74 cM, and 3.17-times narrower than that of the original QTLs. A total of 30 MQTLs were aligned with marker-trait associations (MTAs) reported in genome-wide association studies (GWAS) for chlorophyll traits in wheat. Based on MQTL-flanking marker information and homology analyses combined with RNA-seq data, 136 putative candidate genes were identified in MQTL regions, involved in porphyrin metabolism, photosynthesis, terpene biosynthesis, glyoxylate and dicarboxylate metabolism, and secondary metabolites. The results of this study contribute to the understanding of the genetic basis for controlling chlorophyll traits and can be used in breeding wheat with high photosynthetic efficiency.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Clorofila A , Estudo de Associação Genômica Ampla , Transcriptoma , Melhoramento Vegetal
2.
BMC Genomics ; 24(1): 33, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658498

RESUMO

BACKGROUND: Grain yield is a complex and polygenic trait influenced by the photosynthetic source-sink relationship in wheat. The top three leaves, especially the flag leaf, are considered the major sources of photo-assimilates accumulated in the grain. Determination of significant genomic regions and candidate genes affecting flag leaf size can be used in breeding for grain yield improvement. RESULTS: With the final purpose of understanding key genomic regions for flag leaf size, a meta-analysis of 521 initial quantitative trait loci (QTLs) from 31 independent QTL mapping studies over the past decades was performed, where 333 loci eventually were refined into 64 meta-QTLs (MQTLs). The average confidence interval (CI) of these MQTLs was 5.28 times less than that of the initial QTLs. Thirty-three MQTLs overlapped the marker trait associations (MTAs) previously reported in genome-wide association studies (GWAS) for flag leaf traits in wheat. A total of 2262 candidate genes for flag leaf size, which were involved in the peroxisome, basal transcription factor, and tyrosine metabolism pathways were identified in MQTL regions by the in silico transcriptome assessment. Of these, the expression analysis of the available genes revealed that 134 genes with > 2 transcripts per million (TPM) were highly and specifically expressed in the leaf. These candidate genes could be critical to affect flag leaf size in wheat. CONCLUSIONS: The findings will make further insight into the genetic determinants of flag leaf size and provide some reliable MQTLs and putative candidate genes for the genetic improvement of flag leaf size in wheat.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Estudo de Associação Genômica Ampla , Transcriptoma , Melhoramento Vegetal , Folhas de Planta/genética , Genômica
3.
Ann Bot ; 123(6): 929-949, 2019 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-30759178

RESUMO

BACKGROUND: Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources. SCOPE: Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme. CONCLUSION: Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.


Assuntos
Reguladores de Crescimento de Plantas , Raízes de Plantas , Citocininas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Alocação de Recursos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA