Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Anesthesiol ; 23(1): 239, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454135

RESUMO

OBJECTIVES: To develop and assess a system for shared ventilation using clinically available components to individualize tidal volumes. DESIGN: Evaluation and in vitro validation study SETTING: Ventilator shortage during the SARS-CoV-2 pandemic. PARTICIPANTS: The team consisted of physicians, bioengineers, computer programmers, and medical technology professionals. METHODS: Using clinically available components, a system of ventilation consisting of two ventilatory limbs was assembled and connected to a ventilator. Monitors for each limb were developed using open-source software. Firstly, the effect of altering ventilator settings on tidal volumes delivered to each limb was determined. Secondly, the impact of altering the compliance and resistance of one limb on the tidal volumes delivered to both limbs was analysed. Experiments were repeated three times to determine system variability. RESULTS: The system permitted accurate and reproducible titration of tidal volumes to each limb over a range of ventilator settings and simulated lung conditions. Alteration of ventilator inspiratory pressures, of respiratory rates, and I:E ratio resulted in very similar tidal volumes delivered to each limb. Alteration of compliance and resistance in one limb resulted in reproducible alterations in tidal volume to that test lung, with little change to tidal volumes in the other lung. All tidal volumes delivered were reproducible. CONCLUSIONS: We demonstrate the reliability of a shared ventilation system assembled using commonly available clinical components that allows titration of individual tidal volumes. This system may be useful as a strategy of last resort for Covid-19, or other mass casualty situations, where the need for ventilators exceeds supply.


Assuntos
COVID-19 , Humanos , Volume de Ventilação Pulmonar , COVID-19/terapia , Reprodutibilidade dos Testes , SARS-CoV-2 , Ventiladores Mecânicos , Respiração Artificial/métodos
2.
J Med Biol Eng ; 42(2): 242-252, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35535218

RESUMO

Purpose: Respiratory rate can provide auxiliary information on the physiological changes within the human body, such as physical and emotional stress. In a clinical setup, the abnormal respiratory rate can be indicative of the deterioration of the patient's condition. Most of the existing algorithms for the estimation of respiratory rate using photoplethysmography (PPG) are sensitive to external noise and may require the selection of certain algorithm-specific parameters, through the trial-and-error method. Methods: This paper proposes a new algorithm to estimate the respiratory rate using a photoplethysmography sensor signal for health monitoring. The algorithm is resistant to signal loss and can handle low-quality signals from the sensor. It combines selective windowing, preprocessing and signal conditioning, modified Welch filtering and postprocessing to achieve high accuracy and robustness to noise. Results: The Mean Absolute Error and the Root Mean Square Error of the proposed algorithm, with the optimal signal window size, are determined to be 2.05 breaths count per minute and 2.47 breaths count per minute, respectively, when tested on a publicly available dataset. These results present a significant improvement in accuracy over previously reported methods. The proposed algorithm achieved comparable results to the existing algorithms in the literature on the BIDMC dataset (containing data of 53 subjects, each recorded for 8 min) for other signal window sizes. Conclusion: The results endorse that integration of the proposed algorithm to a commercially available pulse oximetry device would expand its functionality from the measurement of oxygen saturation level and heart rate to the continuous measurement of the respiratory rate with good efficiency at home and in a clinical setting. Supplementary Information: The online version contains supplementary material available at 10.1007/s40846-022-00700-z.

3.
Sensors (Basel) ; 20(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167562

RESUMO

Microwave tomography (MWT) can be used as an alternative modality for monitoring human bone health. Studies have found a significant dielectric contrast between healthy and diseased human trabecular bones. A set of diverse bone phantoms were developed based on single-pole Debye parameters of osteoporotic and osteoarthritis human trabecular bones. The bone phantoms were designed as a two-layered circular structure, where the outer layer mimics the dielectric properties of the cortical bone and the inner layer mimics the dielectric properties of the trabecular bone. The electromagnetic (EM) inverse scattering problem was solved using a distorted Born iterative method (DBIM). A compressed sensing-based linear inversion approach referred to as iterative method with adaptive thresholding for compressed sensing (IMATCS) has been employed for solving the underdetermined set of linear equations at each DBIM iteration. To overcome the challenges posed by the ill-posedness of the EM inverse scattering problem, the L2-based regularization approach was adopted in the amalgamation of the IMATCS approach. The simulation results showed that osteoporotic and osteoarthritis bones can be differentiated based on the reconstructed dielectric properties even for low values of the signal-to-noise ratio. These results show that the adopted approach can be used to monitor bone health based on the reconstructed dielectric properties.


Assuntos
Densidade Óssea , Osso e Ossos/diagnóstico por imagem , Imageamento de Micro-Ondas , Imagens de Fantasmas , Algoritmos , Humanos
4.
Sensors (Basel) ; 20(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899338

RESUMO

Diagnosing and treating acute coronary syndromes consumes a significant fraction of the healthcare budget worldwide. The pressure on resources is expected to increase with the continuing rise of cardiovascular disease, other chronic diseases and extended life expectancy, while expenditure is constrained. The objective of this review is to assess if home-based solutions for measuring chemical cardiac biomarkers can mitigate or reduce the continued rise in the costs of ACS treatment. A systematic review was performed considering published literature in several relevant public databases (i.e., PUBMED, Cochrane, Embase and Scopus) focusing on current biomarker practices in high-risk patients, their cost-effectiveness and the clinical evidence and feasibility of implementation. Out of 26,000 references screened, 86 met the inclusion criteria after independent full-text review. Current clinical evidence highlights that home-based solutions implemented in primary and secondary prevention reduce health care costs by earlier diagnosis, improved patient outcomes and quality of life, as well as by avoidance of unnecessary use of resources. Economical evidence suggests their potential to reduce health care costs if the incremental cost-effectiveness ratio or the willingness-to-pay does not surpass £20,000/QALY or €50,000 limit per 20,000 patients, respectively. The cost-effectiveness of these solutions increases when applied to high-risk patients.


Assuntos
Síndrome Coronariana Aguda , Custos de Cuidados de Saúde , Serviços de Assistência Domiciliar , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/terapia , Análise Custo-Benefício , Humanos , Qualidade de Vida , Anos de Vida Ajustados por Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA