RESUMO
Biodiesel serves as a viable alternative to traditional diesel due to its non-toxicity, biodegradability, and lower environmental footprint. Among the diverse edible and inedible feedstocks, waste frying oil emerges as a promising and affordable feedstock for biodiesel production. Commonly waste frying oils include those derived from palm, corn, sunflower, soybean, rapeseed, and canola. The primary challenge related to biodiesel production technologies is the high production cost, which poses a significant barrier to its widespread adoption. Thus, refining the production techniques is essential to enhance yield, reduce capital expenditure, and curtail raw material expenses. An examination of the research focusing on feedstock availability, production, hurdles, operational expenditures, and future potential is pivotal for identifying the most economically and technically viable solutions. This paper critically reviews such research by exploring feedstock availability, production techniques, challenges, and costs intrinsic to biodiesel synthesis. It also underscores the economic feasibility of biodiesel production, shedding light on the pivotal factors that influence profitability, especially when leveraging waste frying oils. Through an in-depth understanding of these considerations, optimal production and feedstock choices for biodiesel production can be identified. Addressing cost and production bottlenecks could potentially enhance the economic viability of waste frying oil-based biodiesel, thus fostering both environmental sustainability and more extensive adoption of biodiesel as an environmental-friendly fuel in the future.
Assuntos
Biocombustíveis , Óleos de PlantasRESUMO
Four mononuclear bioefficient imine-based coordination complexes, [(L 1 ) 2 Cu], [(L 1 ) 2 Zn], [(L 2 )Cu(H 2 O)], and [(L 2 )Zn(H 2 O)], were synthesized using ligands [L 1 = 2-(((3-hydroxynaphthalen-2-yl)methylene)amino)-2-methylpropane-1,3-diol and L 2 = 4-(1-((1,3-dihydroxy-2-methylpropan-2-yl)imino)ethyl)benzene-1,3-diol]. The formation of the complexes was ascertained by elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, electrospray ionization-mass spectroscopy, electron paramagnetic resonance, and thermogravimetric analysis. The comparative binding propensity profiles of the above-synthesized complexes with the DNA/human serum albumin (HSA) were investigated via UV absorption, fluorescence, and Förster resonance energy-transfer studies. On the basis of extended conjugation and planarity, L 1 complexes exhibited superior bioactivity with greater calculated DNA binding constant values, (K b) 2.9444 × 103 [(L 1 ) 2 Cu] and 2.2693 × 103 [(L 1 ) 2 Zn], as compared to L 2 complexes, 1.793 × 103 [(L 2 )Cu(H 2 O)] and 9.801 × 102 [(L 2 )Zn(H 2 O)]. The competitive displacement assay of complexes was performed by means of fluorogenic dyes (EtBr and Hoechst), which corroborates the occurrence of minor groove binding because of the enhanced displacement activity with Hoechst 33258. The minor groove binding of the [(L 1 ) 2 Cu] complex is further confirmed by the molecular docking study. Moreover, the HSA study demonstrated effective static quenching of complexes with substantial K sv values. The [(L 1 ) 2 Cu] complex was found to have pronounced cleavage efficiency as evaluated from sodium dodecyl sulfate polyacrylamide gel electrophoresis electrophoresis. Furthermore, in vitro antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl and superoxide radicals further proclaimed the remarkable bioefficiency of compounds, which make them promising as active chemotherapeutic agents.
RESUMO
Novel bioactive 5-chloro isatin based Schiff base ligands, (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrobenzo [d]thiazol-2-amine), L(1) and (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrothiazol-2-amine), L(2) derived from 2-amino 5-nitrobenzothiazole and 2-amino 5-nitrothiazole and their metal complexes, [Cu(L(1))2]Cl2;1, [Zn(L(1))2(H2O)2]Cl2;2, [Cu(L(2))2]Cl2;3 and [Zn(L(2))2(H2O)2]Cl2;4 have been synthesized. The composition, stoichiometry and geometry of the proposed ligands and their complexes have been envisaged by the results of elemental analyses and spectroscopic data (FT-IR, (1)H NMR and (13)C NMR, Mass and EPR). The molar conductivity values of the metal complexes revealed their ionic nature. The thermal stability of metal complexes was demonstrated by TGA/DTA studies while the crystalline nature of the complexes has been ascertained by XRD. Furthermore, a comparative account of in vitro antibacterial study against different bacterial strains with respect to standard antibiotic and scavenging activity against standard control at different concenterations unfolded pronounced antibacterial and radical scavenging potencies of the metal complexes as compared to free ligands. In addition, in vitro cytotoxicity of ligands and its metal complexes was also screened on MCF7 (Human breast adenocarcinoma), HeLa (Human cervical carcinoma) and HepG2 (Human Hepatocellular carcinoma), cell lines and normal cells (PBMC). The antiproliferative outcomes revealed that metal complexes exhibit superior activity in general as compared to free ligands (L(1) and L(2)) where metal complexes (1 and 2) of 5-chloro isatin linked benzothiazole motif (L(1)) are found to have better prospect of acting as chemotherapeutic agents which can be explained in terms of greater biopotency, planarity and conjugation against all the tested cancer cell lines with IC50<2.80 µM.