Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vavilovskii Zhurnal Genet Selektsii ; 26(2): 214-221, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35434492

RESUMO

HIV infection still remains a major challenge for healthcare systems of the world. There are several aspects on counteracting the HIV/AIDS epidemic. The f irst aspect covers preventive measures including educational campaigns on HIV/AIDS and promotion of a healthy lifestyle, protected sex, and pre-exposure prophylaxis of vulnerable groups. The second aspect is timely HIV testing and the use of antiretroviral therapy when test results come back positive. The third aspect is the scientif ic research associated with discovering new pharmaceutical agents and developing HIV-1 vaccines. Selecting an adequate tool for quick and accurate in vitro eff icacy assessment is the key aspect for eff icacy assessment of vaccines and chemotherapy drugs. The classical method of virology, which makes it possible to evaluate the neutralizing activity of the sera of animals immunized with experimental vaccines and the eff icacy of chemotherapy agents is the method of neutralization using viral isolates and infectious molecular clones, i. e. infectious viral particles obtained via cell transfection with a plasmid vector including the full-length HIV-1 genome coding structural, regulatory, and accessory proteins of the virus required for the cultivation of replication-competent viral particles in cell culture. However, neutralization assessment using viral isolates and infectious molecular clones is demanding in terms of time, effort, and biosafety measures. An alternative eliminating these disadvantages and allowing for rapid screening is the use of pseudoviruses, which are recombinant viral particles, for the analysis of neutralizing activity. Pseudotyped viruses have defective genomes restricting their replication to a single cycle, which renders them harmless compared to infectious viruses. The present review focuses on describing viral model systems for in vitro eff icacy assessment of vaccines and drugs against HIV-1, which include primary HIV-1 isolates, laboratoryadapted strains, infectious molecular clones, and env-pseudoviruses. A brief comparison of the listed models is presented. The HIV-1 env-pseudoviruses approach is described in more detail.

2.
Prikl Biokhim Mikrobiol ; 51(3): 326-34, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26204777

RESUMO

We performed a quantitative assessment of the conidia yield in Neurospora crassa in response to treatment with different conidiation effectors. Depending on nitrogen source and intactness of nitrite reductase (NiR) and nitrate reductase (NR), light and dehydration affected the number of viable conidia produced by the ascomycete. In most variants of the nitrogen status, the combined action of light and dehydration synergistically increased the conidia yield. Conidiation in wild-type cells cultivated on the medium with NH4Cl as a sole nitrogen source did not respond to light, whereas illumination of the same culture grown on NH4NO3- or NaNO3-containing medium stimulated the process of spore formation. In response to light exposure, conidia formation occurred in the same way in the nit-2 (no NR and NiR) and nit-6 (no NiR) mutants cultivated in the presence of NH4Cl, but differed greatly when grown on the medium with NH4NO3. The results obtained indicate the possibility that NR and NiR participate in the photoconidiation regulation (wild-type strain on the medium with secondary nitrogen source); however, they cannot be necessary because light-dependent stimulation of spore formation was observed in nit-2 and nit-6 mutants.


Assuntos
Luz , Micélio/metabolismo , Neurospora crassa/fisiologia , Nitrogênio/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico/fisiologia , Micélio/genética , Esporos Fúngicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA