Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Chem ; 11: 1273191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025070

RESUMO

Typha domingensis, a medicinal plant with significant traditional importance for curing various human diseases, has potentially bioactive compounds but was less explored previously. Therefore, this study aims to investigate the therapeutic potential of T. domingensis by evaluating the phytochemical profile through high-performance liquid chromatography (HPLC) techniques and its biological activities (in vitro and in vivo) from the methanolic extract derived from the entire plant (TDME). The secondary metabolite profile of TDME regulated by reverse phase ultra-high-performance liquid chromatography-mass spectrometry (RP-UHPLC-MS) revealed some bioactive compounds by -ve and +ve modes of ionization. The HPLC quantification study showed the precise quantity of polyphenols (p-coumaric acid, 207.47; gallic acid, 96.25; and kaempferol, 95.78 µg/g extract). The enzyme inhibition assays revealed the IC50 of TDME as 44.75 ± 0.51, 52.71 ± 0.01, and 67.19 ± 0.68 µgmL-1, which were significant compared to their respective standards (indomethacin, 18.03 ± 0.12; quercetin, 4.11 ± 0.01; and thiourea, 8.97 ± 0.11) for lipoxygenase, α-glucosidase, and urease, respectively. Safety was assessed by in vitro hemolysis (4.25% ± 0.16% compared to triton × 100, 93.51% ± 0.36%), which was further confirmed (up to 10 g/kg) by an in vivo model of rats. TDME demonstrated significant (p < 0.05) potential in analgesic activity by hot plate and tail immersion tests and anti-inflammatory activity by the carrageenan-induced hind paw edema model. Pain latency decreased significantly, and the anti-inflammatory effect increased in a dose-dependent way. Additionally, in silico molecular docking revealed that 1,3,4,5-tetracaffeoylquinic acid and formononetin 7-O-glucoside-6″-O-malonate possibly contribute to enzyme inhibitory activities due to their higher binding affinities compared to standard inhibitors. An in silico absorption, distribution, metabolism, excretion, and toxicological study also predicted the pharmacokinetics and safety of the chosen compounds identified from TDME. To sum up, it was shown that TDME contains bioactive chemicals and has strong biological activities. The current investigations on T. domingensis could be extended to explore its potential applications in nutraceutical industries and encourage the isolation of novel molecules with anti-inflammatory and analgesic effects.

2.
Saudi Pharm J ; 31(6): 1047-1060, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37250362

RESUMO

Launaea fragilis (Asso) Pau (Family: Asteraceae) is a wild medicinal plant that has been used in the folklore as a potential treatment for numerous ailments such as skin diseases, diarrhea, infected wounds, inflammation, child fever and hepatic pain. This study explored the chemical constitution, in-vivo toxicity, antimicrobial, antioxidant, and enzyme inhibition potential of ethanolic extract of L. fragilis (EELF). Additionally, in-silico docking studies of predominant compounds were performed against in-vitro tested enzymes. Similarly, in-silico ADMET properties of the compounds were performed to determine their pharmacokinetics, physicochemical properties, and toxicity profiles. The EELF was found rich in TFC (73.45 ± 0.25 mg QE/g) and TPC (109.02 ± 0.23 mg GAE/g). GC-MS profiling of EELF indicated the presence of a total of 47 compounds mainly fatty acids and essential oil. EELF showed no toxicity or growth retardation in chicks up to 300 mg/kg with no effect on the biochemistry and hematology of the chicks. EELF gave promising antioxidant activity through the CUPRAC method with an IC50 value of 13.14 ± 0.18 µg/ml. The highest inhibition activity against tyrosinase followed by acetylcholinesterase and α-Glucosidase was detected. Similarly, the antimicrobial study revealed the extract with good antibacterial and antiviral activity. A good docking score was observed in the in silico computational study of the predominant compounds. The findings revealed L. fragilis as a biocompatible, potent therapeutic alternative and suggest isolation and further in vivo pharmacological studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA