Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 250: 118503, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367840

RESUMO

Existing fossil-based commercial products present a significant threat to the depletion of global natural resources and the conservation of the natural environment. Also, the ongoing generation of waste is giving rise to challenges in waste management. Conventional practices for the management of waste, for instance, incineration and landfilling, emit gases that contribute to global warming. Additionally, the need for energy is escalating rapidly due to the growing populace and industrialization. To address this escalating desire in a sustainable manner, access to clean and renewable sources of energy is imperative for long-term development of mankind. These interrelated challenges can be effectively tackled through the scientific application of biowaste-to-bioenergy technologies. The current article states an overview of the strategies and current status of these technologies, including anaerobic digestion, transesterification, photobiological hydrogen production, and alcoholic fermentation which are utilized to convert diverse biowastes such as agricultural and forest residues, animal waste, and municipal waste into bioenergy forms like bioelectricity, biodiesel, bio alcohol, and biogas. The successful implementation of these technologies requires the collaborative efforts of government, stakeholders, researchers, and scientists to enhance their practicability and widespread adoption.


Assuntos
Biocombustíveis , Gerenciamento de Resíduos/métodos , Conservação dos Recursos Naturais/métodos , Desenvolvimento Sustentável
2.
Environ Pollut ; 316(Pt 1): 120507, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341830

RESUMO

The current study elucidates the fundamentals of technical, financial, and environmental viability of the processes used for sustainable "drop-in" fuel generation. At present, the price of producing "drop-in" fuels is around two times as costly (5-6 USD/gallon) as the cost of fossil fuels (3 USD/gallon), especially when using second-generation feedstocks. Hence, this necessitates a comprehensive techno-economic understanding of the current technologies with respect to "drop-in"-fuel. This entitles technical-economic viability, and environmental sustainability to make the processes involved commercially viable. In this context, the present review addresses unique contrasts among the various processes involved in "drop-in" fuel production. Furthermore, principles and process flow of techno-economic analysis as well as environmental implications in terms of reduced carbon footprint and carbon credit are elucidated to discuss fundamentals of techno-economic analysis in terms of capital and operational expenditure, revenue, simulation, cash flow analysis, mass and energy balances with respect to evidence-based practices. Case specific techno-economic studies with current developments in this field of research with emphasis on software tools viz., Aspen Plus, Aspen HYSIS, Aspen Plus Economic Analyser (APEC) Aspen Icarus Process Evaluator (AIPE) are also highlighted. The study also emphasis on the carbon foot print of biofuels and its carbon credits (Carbon Offset Credits (COCs) and Carbon Reduction Credits (CRCs)) by leveraging a deep technical and robust business-oriented insights about the techno-economic analysis (TEA) exclusively for the biofuel production.


Assuntos
Biocombustíveis , Carbono , Simulação por Computador
3.
Bioresour Technol ; 343: 126151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34673197

RESUMO

Lignocellulosic biomass is an effective and sustainable alternative for petroleum-derived fuels and chemicals to produce biofuels and bio-based products. Despite the high availability, the degradation of biomass is a substantial challenge. Hence, it is necessary to integrate several unit processes such as biochemical, thermochemical, physical, and catalytic conversion to produce wide range of bio-based products. Integrating these processes enhances the yield, reduces the reaction time, and can be cost-effective. Process integration could significantly lead to various outcomes which guides towards the circular economy. This review addresses integration of several biorefinery processes for the production of multifaceted products. In addition, modern and sustainable biorefinery technologies are discussed to pave the path towards circular economy through the closed-loop approach.


Assuntos
Biocombustíveis , Lignina , Biomassa , Catálise
4.
Chem Eng J ; 421(1)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34504393

RESUMO

Microplastics (MPs) and nanoplastics (NPs) have gained much attention in recent years because of their ubiquitous presence, which is the widely acknowledged threat to the environment. MPs can be <5 mm size, while NPs are <100 nm, and both can be detected in various forms and shapes in the environment to alleviate their harmful effects on aquatic species, soil organisms, birds, and humans. In efforts to address these issues, the present review discusses about sampling methods for water, sediments, and biota along with their merits and demerits. Various identification techniques such as FTIR, Raman, ToF-SIMS, MALDI TOF MS, and ICP-MS are critically discussed. The detrimental effects caused by MPs and NPs are discussed critically along with the efficient and cost-effective treatment processes including membrane technologies in order to remove plastics particles from various sources to mitigate their environmental pollution and risk assessment.

5.
Environ Pollut ; 267: 115501, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892013

RESUMO

An upsurge in global population due to speedy urbanization and industrialization is facing significant challenges such as rising energy-demand, enormous waste-generation and environmental deterioration. The waste-to-energy nexus based on the 5R principle (Reduce, Reuse, Recycle, Recovery, and Restore) is of paramount importance in solving these Gordian knots. This review essentially concentrates on latest advancements in the field of 'simultaneous waste reduction and energy production' technologies. The waste-to-energy approaches (thermal and biochemical) for energy production from the agricultural residues are comprehensively discussed in terms environmental, techno-economic, and policy analysis. The review will assess the loopholes in order to come up with more sophisticated technologies that are not only eco-friendly and cost-effective, but also socially viable. The waste-to-energy nexus as a paradigm for sustainable development of restoring waste is critically discussed considering future advancement plans and agendas of the policy-makers.


Assuntos
Desenvolvimento Sustentável , Gerenciamento de Resíduos , Agricultura , Fenômenos Físicos , Urbanização
6.
Sci Total Environ ; 713: 136633, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32019020

RESUMO

The energy demand has increased exponentially worldwide owing to the continuously growing population and urbanization. The conventional fossil fuels are unable to satiate this requirement causing price inflation and significant environmental damage due to unrestrained emission of greenhouse gases. The focus now has shifted towards alternative, economical, renewable and green sources of energy such as hydrogen to deal with this bottle-neck. Hydrogen is a clean energy-source having high energy content (122 kJ/g). Recently, biological methods for the hydrogen production have attracted much attention because traditional methods are expensive, energy-exhaustive and not eco-friendly. The employment of biological methods promises utilization of waste or low-value materials for producing energy and building waste-to-energy nexus. Around 94% of the waste is discarded precariously in India and waste generation is growing at an alarming rate of 1.3% per year. The "waste-to-energy" techniques follow 'Reuse, Reduce, Recycle, Recovery and Reclamation' system solving three subjects at once; waste-management, energy-demand and environmental concern. Moreover, these methods have easy operability, cost-effectiveness and they help to shift from linear to circular model of economy for sustainable development. Biological processing of waste materials like agricultural discard (lignocellulosic biomass), food-waste and industrial discharge can be used for biohydrogen production. Dark and photo fermentation are the chief biological processes for the transformation of organic substrates to hydrogen. Dark fermentation is the acidogenic fermentation of carbohydrate-rich materials without light and oxygen. Clostridia, Enterobacter and Bacillus spp. are appropriate heterotrophic bacteria for dark fermentation. Various pretreatment methods like heat treatment, acid or base treatment, ultrasonication, aeration, electroporation, etc., can be applied on inoculums to increase H2 producing bacteria eventually improving the hydrogen yield. However, only around 33% of COD in organic materials is transformed to H2 by this method. Photofermentation by the photosynthetic non-sulfur bacteria (PNS) converts organic substrate to H2 and CO2 in the presence of nitrogenase enzyme in ammonium-limited and anoxygenic conditions. Rhodobacter or Rhodopseudomonas strains have been widely examined in this regard. But these methods are only able to produce H2 with a poor yield. Combining dark and photofermentation is a noteworthy alternative for procuring enhanced hydrogen yields. Two-stage sequential method utilizes volatile fatty acids accumulated as byproducts after dark fermentation (in the first stage) for photofermentation by suitable bacteria (in the second stage). A proper investigation of the dark fermenter effluents is required before using them as a substrate for photo-fermentation. In a single-stage dark and photofermentation, co-culture of anaerobic and PNS bacteria in a single reactor is carried out for obtaining improved yield. The single stage system is comparatively inexpensive and less laborious; moreover, a limited requirement for an intermediate dilution stage is necessary. Economic analysis of hydrogen production showed that H2 production by the present methods, save pyrolysis, is reasonably higher than the conventional approaches of fuel production. Probable routes to make H2 production more cost-effective are reducing the cost of photobioreactor, installing proper storage system, etc. A constructive effort in the area of research and development of biological approaches of H2 production technologies is vital. The commercial viability of biohydrogen production is imperative for accomplishment of circular economy system and sustainable development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA