Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Lancet Digit Health ; 6(2): e126-e130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38278614

RESUMO

Advances in machine learning for health care have brought concerns about bias from the research community; specifically, the introduction, perpetuation, or exacerbation of care disparities. Reinforcing these concerns is the finding that medical images often reveal signals about sensitive attributes in ways that are hard to pinpoint by both algorithms and people. This finding raises a question about how to best design general purpose pretrained embeddings (GPPEs, defined as embeddings meant to support a broad array of use cases) for building downstream models that are free from particular types of bias. The downstream model should be carefully evaluated for bias, and audited and improved as appropriate. However, in our view, well intentioned attempts to prevent the upstream components-GPPEs-from learning sensitive attributes can have unintended consequences on the downstream models. Despite producing a veneer of technical neutrality, the resultant end-to-end system might still be biased or poorly performing. We present reasons, by building on previously published data, to support the reasoning that GPPEs should ideally contain as much information as the original data contain, and highlight the perils of trying to remove sensitive attributes from a GPPE. We also emphasise that downstream prediction models trained for specific tasks and settings, whether developed using GPPEs or not, should be carefully designed and evaluated to avoid bias that makes models vulnerable to issues such as distributional shift. These evaluations should be done by a diverse team, including social scientists, on a diverse cohort representing the full breadth of the patient population for which the final model is intended.


Assuntos
Atenção à Saúde , Aprendizado de Máquina , Humanos , Viés , Algoritmos
2.
JAMA Netw Open ; 6(1): e2248685, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36598790

RESUMO

Importance: Fetal ultrasonography is essential for confirmation of gestational age (GA), and accurate GA assessment is important for providing appropriate care throughout pregnancy and for identifying complications, including fetal growth disorders. Derivation of GA from manual fetal biometry measurements (ie, head, abdomen, and femur) is operator dependent and time-consuming. Objective: To develop artificial intelligence (AI) models to estimate GA with higher accuracy and reliability, leveraging standard biometry images and fly-to ultrasonography videos. Design, Setting, and Participants: To improve GA estimates, this diagnostic study used AI to interpret standard plane ultrasonography images and fly-to ultrasonography videos, which are 5- to 10-second videos that can be automatically recorded as part of the standard of care before the still image is captured. Three AI models were developed and validated: (1) an image model using standard plane images, (2) a video model using fly-to videos, and (3) an ensemble model (combining both image and video models). The models were trained and evaluated on data from the Fetal Age Machine Learning Initiative (FAMLI) cohort, which included participants from 2 study sites at Chapel Hill, North Carolina (US), and Lusaka, Zambia. Participants were eligible to be part of this study if they received routine antenatal care at 1 of these sites, were aged 18 years or older, had a viable intrauterine singleton pregnancy, and could provide written consent. They were not eligible if they had known uterine or fetal abnormality, or had any other conditions that would make participation unsafe or complicate interpretation. Data analysis was performed from January to July 2022. Main Outcomes and Measures: The primary analysis outcome for GA was the mean difference in absolute error between the GA model estimate and the clinical standard estimate, with the ground truth GA extrapolated from the initial GA estimated at an initial examination. Results: Of the total cohort of 3842 participants, data were calculated for a test set of 404 participants with a mean (SD) age of 28.8 (5.6) years at enrollment. All models were statistically superior to standard fetal biometry-based GA estimates derived from images captured by expert sonographers. The ensemble model had the lowest mean absolute error compared with the clinical standard fetal biometry (mean [SD] difference, -1.51 [3.96] days; 95% CI, -1.90 to -1.10 days). All 3 models outperformed standard biometry by a more substantial margin on fetuses that were predicted to be small for their GA. Conclusions and Relevance: These findings suggest that AI models have the potential to empower trained operators to estimate GA with higher accuracy.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Humanos , Gravidez , Feminino , Idade Gestacional , Reprodutibilidade dos Testes , Zâmbia , Ultrassonografia
3.
Commun Med (Lond) ; 2: 128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249461

RESUMO

Background: Fetal ultrasound is an important component of antenatal care, but shortage of adequately trained healthcare workers has limited its adoption in low-to-middle-income countries. This study investigated the use of artificial intelligence for fetal ultrasound in under-resourced settings. Methods: Blind sweep ultrasounds, consisting of six freehand ultrasound sweeps, were collected by sonographers in the USA and Zambia, and novice operators in Zambia. We developed artificial intelligence (AI) models that used blind sweeps to predict gestational age (GA) and fetal malpresentation. AI GA estimates and standard fetal biometry estimates were compared to a previously established ground truth, and evaluated for difference in absolute error. Fetal malpresentation (non-cephalic vs cephalic) was compared to sonographer assessment. On-device AI model run-times were benchmarked on Android mobile phones. Results: Here we show that GA estimation accuracy of the AI model is non-inferior to standard fetal biometry estimates (error difference -1.4 ± 4.5 days, 95% CI -1.8, -0.9, n = 406). Non-inferiority is maintained when blind sweeps are acquired by novice operators performing only two of six sweep motion types. Fetal malpresentation AUC-ROC is 0.977 (95% CI, 0.949, 1.00, n = 613), sonographers and novices have similar AUC-ROC. Software run-times on mobile phones for both diagnostic models are less than 3 s after completion of a sweep. Conclusions: The gestational age model is non-inferior to the clinical standard and the fetal malpresentation model has high AUC-ROCs across operators and devices. Our AI models are able to run on-device, without internet connectivity, and provide feedback scores to assist in upleveling the capabilities of lightly trained ultrasound operators in low resource settings.

5.
Radiology ; 294(2): 421-431, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31793848

RESUMO

BackgroundDeep learning has the potential to augment the use of chest radiography in clinical radiology, but challenges include poor generalizability, spectrum bias, and difficulty comparing across studies.PurposeTo develop and evaluate deep learning models for chest radiograph interpretation by using radiologist-adjudicated reference standards.Materials and MethodsDeep learning models were developed to detect four findings (pneumothorax, opacity, nodule or mass, and fracture) on frontal chest radiographs. This retrospective study used two data sets. Data set 1 (DS1) consisted of 759 611 images from a multicity hospital network and ChestX-ray14 is a publicly available data set with 112 120 images. Natural language processing and expert review of a subset of images provided labels for 657 954 training images. Test sets consisted of 1818 and 1962 images from DS1 and ChestX-ray14, respectively. Reference standards were defined by radiologist-adjudicated image review. Performance was evaluated by area under the receiver operating characteristic curve analysis, sensitivity, specificity, and positive predictive value. Four radiologists reviewed test set images for performance comparison. Inverse probability weighting was applied to DS1 to account for positive radiograph enrichment and estimate population-level performance.ResultsIn DS1, population-adjusted areas under the receiver operating characteristic curve for pneumothorax, nodule or mass, airspace opacity, and fracture were, respectively, 0.95 (95% confidence interval [CI]: 0.91, 0.99), 0.72 (95% CI: 0.66, 0.77), 0.91 (95% CI: 0.88, 0.93), and 0.86 (95% CI: 0.79, 0.92). With ChestX-ray14, areas under the receiver operating characteristic curve were 0.94 (95% CI: 0.93, 0.96), 0.91 (95% CI: 0.89, 0.93), 0.94 (95% CI: 0.93, 0.95), and 0.81 (95% CI: 0.75, 0.86), respectively.ConclusionExpert-level models for detecting clinically relevant chest radiograph findings were developed for this study by using adjudicated reference standards and with population-level performance estimation. Radiologist-adjudicated labels for 2412 ChestX-ray14 validation set images and 1962 test set images are provided.© RSNA, 2019Online supplemental material is available for this article.See also the editorial by Chang in this issue.


Assuntos
Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Radiografia Torácica/métodos , Doenças Respiratórias/diagnóstico por imagem , Traumatismos Torácicos/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Aprendizado Profundo , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Pneumotórax , Radiologistas , Padrões de Referência , Reprodutibilidade dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA