Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Nucl Med ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604759

RESUMO

The purpose of this study was to examine a nonparametric approach to mapping kinetic parameters and their uncertainties with data from the emerging generation of dynamic whole-body PET/CT scanners. Methods: Dynamic PET 18F-FDG data from a set of 24 cancer patients studied on a long-axial-field-of-view PET/CT scanner were considered. Kinetics were mapped using a nonparametric residue mapping (NPRM) technique. Uncertainties were evaluated using an image-based bootstrapping methodology. Kinetics and bootstrap-derived uncertainties are reported for voxels, maximum-intensity projections, and volumes of interest (VOIs) corresponding to several key organs and lesions. Comparisons between NPRM and standard 2-compartment (2C) modeling of VOI kinetics are carefully examined. Results: NPRM-generated kinetic maps were of good quality and well aligned with vascular and metabolic 18F-FDG patterns, reasonable for the range of VOIs considered. On a single 3.2-GHz processor, the specification of the bootstrapping model took 140 min; individual bootstrap replicates required 80 min each. VOI time-course data were much more accurately represented, particularly in the early time course, by NPRM than by 2C modeling constructs, and improvements in fit were statistically highly significant. Although 18F-FDG flux values evaluated by NPRM and 2C modeling were generally similar, significant deviations between vascular blood and distribution volume estimates were found. The bootstrap enables the assessment of quite complex summaries of mapped kinetics. This is illustrated with maximum-intensity maps of kinetics and their uncertainties. Conclusion: NPRM kinetics combined with image-domain bootstrapping is practical with large whole-body dynamic 18F-FDG datasets. The information provided by bootstrapping could support more sophisticated uses of PET biomarkers used in clinical decision-making for the individual patient.

2.
Eur J Nucl Med Mol Imaging ; 50(12): 3558-3571, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37466650

RESUMO

PURPOSE: Long axial field-of-view (LAFOV) systems have a much higher sensitivity than standard axial field-of-view (SAFOV) PET systems for imaging the torso or full body, which allows faster and/or lower dose imaging. Despite its very high sensitivity, current total-body PET (TB-PET) throughput is limited by patient handling (positioning on the bed) and often a shortage of available personnel. This factor, combined with high system costs, makes it hard to justify the implementation of these systems for many academic and nearly all routine nuclear medicine departments. We, therefore, propose a novel, cost-effective, dual flat panel TB-PET system for patients in upright standing positions to avoid the time-consuming positioning on a PET-CT table; the walk-through (WT) TB-PET. We describe a patient-centered, flat panel PET design that offers very efficient patient throughput and uses monolithic detectors (with BGO or LYSO) with depth-of-interaction (DOI) capabilities and high intrinsic spatial resolution. We compare system sensitivity, component costs, and patient throughput of the proposed WT-TB-PET to a SAFOV (= 26 cm) and a LAFOV (= 106 cm) LSO PET systems. METHODS: Patient width, height (= top head to start of thighs) and depth (= distance from the bed to front of patient) were derived from 40 randomly selected PET-CT scans to define the design dimensions of the WT-TB-PET. We compare this new PET system to the commercially available Siemens Biograph Vision 600 (SAFOV) and Siemens Quadra (LAFOV) PET-CT in terms of component costs, system sensitivity, and patient throughput. System cost comparison was based on estimating the cost of the two main components in the PET system (Silicon Photomultipliers (SiPMs) and scintillators). Sensitivity values were determined using Gate Monte Carlo simulations. Patient throughput times (including CT and scout scan, patient positioning on bed and transfer) were recorded for 1 day on a Siemens Vision 600 PET. These timing values were then used to estimate the expected patient throughput (assuming an equal patient radiotracer injected activity to patients and considering differences in system sensitivity and time-of-flight information) for WT-TB-PET, SAFOV and LAFOV PET. RESULTS: The WT-TB-PET is composed of two flat panels; each is 70 cm wide and 106 cm high, with a 50-cm gap between both panels. These design dimensions were justified by the patient sizes measured from the 40 random PET-CT scans. Each panel consists of 14 × 20 monolithic BGO detector blocks that are 50 × 50 × 16 mm in size and are coupled to a readout with 6 × 6 mm SiPMs arrays. For the WT-TB-PET, the detector surface is reduced by a factor of 1.9 and the scintillator volume by a factor of 2.2 compared to LAFOV PET systems, while demonstrating comparable sensitivity and much better uniform spatial resolution (< 2 mm in all directions over the FOV). The estimated component cost for the WT-TB-PET is 3.3 × lower than that of a 106 cm LAFOV system and only 20% higher than the PET component costs of a SAFOV. The estimated maximum number of patients scanned on a standard 8-h working day increases from 28 (for SAFOV) to 53-60 (for LAFOV in limited/full acceptance) to 87 (for the WT-TB-PET). By scanning faster (more patients), the amount of ordered activity per patient can be reduced drastically: the WT-TB-PET requires 66% less ordered activity per patient than a SAFOV. CONCLUSIONS: We propose a monolithic BGO or LYSO-based WT-TB-PET system with DOI measurements that departs from the classical patient positioning on a table and allows patients to stand upright between two flat panels. The WT-TB-PET system provides a solution to achieve a much lower cost TB-PET approaching the cost of a SAFOV system. High patient throughput is increased by fast patient positioning between two vertical flat panel detectors of high sensitivity. High spatial resolution (< 2 mm) uniform over the FOV is obtained by using DOI-capable monolithic scintillators.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Humanos , Tomografia por Emissão de Pósitrons/métodos , Método de Monte Carlo , Assistência Centrada no Paciente
3.
Eur J Nucl Med Mol Imaging ; 50(5): 1384-1394, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36572740

RESUMO

PURPOSE: Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS: We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to ß-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS: The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION: The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Fluordesoxiglucose F18 , Doença de Alzheimer/diagnóstico por imagem , Amiloide/metabolismo , Compostos de Anilina , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Perfusão
4.
Phys Med Biol ; 60(13): 5261-78, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26086805

RESUMO

Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6 ± 4.2 µm (energy weighted centroid approximation) to 132.3 ± 3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Interpretação de Imagem Assistida por Computador/métodos , Folhas de Planta , Tomografia por Emissão de Pósitrons/instrumentação , Tomografia por Emissão de Pósitrons/métodos , Máquina de Vetores de Suporte , Vitaceae , Algoritmos , Simulação por Computador , Elétrons , Humanos , Método de Monte Carlo , Compostos Radiofarmacêuticos/farmacocinética
5.
Radiother Oncol ; 99(3): 412-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21719136

RESUMO

PURPOSE: Both, acute and chronic hypoxia can have unfavorable impacts on tumor progression and therapy response. The aim of this study was to optimize a macroscopic technique for the quantification of acute and chronic hypoxia (Wang model assessment of serial [(18)F]Fmiso PET/CT imaging) by comparing with a microscopic technique [(immuno-)fluorescence staining in tumor cryosections]. MATERIALS AND METHODS: Tumor pieces from the human squamous cell carcinoma lines from the head and neck FaDu and CAL33 were xenografted into the hind leg of NMRI nu/nu mice. Tumor-bearing mice were placed on an in-house developed multi-point fixation system and subjected to two consecutive dynamic [(18)F]Fmiso PET/CTs within a 24h interval. The Wang model was applied to SUV (standard uptake values) to quantify the fractions of acute and chronic hypoxia. Hypoxia subtypes were also assessed in vital tumor tissue of cryosections from the same tumors for (immuno-)fluorescence distributions of Hoechst 33342 (perfusion), pimonidazole (hypoxia), and CD31 (endothelium) using pattern recognition in microcirculatory supply units (defined as vital tumor tissue area supplied by a single microvessel). RESULTS: Using our multi-point fixation system, acceptable co-registration (registration errors ε ranged from 0.34 to 1.37) between serial PET/CT images within individual voxels was achieved. The Wang model consistently yielded higher fractions of acute hypoxia than the MCSU method. Through specific modification of the Wang model (Wang(mod)), it was possible to reduce the fraction of acute hypoxia. However, there was no significant correlation between the fractions of acute hypoxia in individual tumors assessed by the Wang(mod) model and the MCSU method for either tumor line (FaDu: r=0.68, p=0.21 and CAL33: r=0.71, p=0.18). This lack of correlation is most-likely due to the difference between the non-linear uptake of [(18)F]Fmiso and the spatial assessment of MCSUs. CONCLUSIONS: Whether the Wang model can be used to predict radiation response after serial [(18)F]Fmiso PET imaging, needs to be confirmed in experimental and clinical studies.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Hipóxia Celular , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Misonidazol/análogos & derivados , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Doença Aguda , Animais , Linhagem Celular Tumoral , Doença Crônica , Progressão da Doença , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Camundongos , Misonidazol/farmacocinética , Radiossensibilizantes/farmacologia , Transplante Heterólogo
6.
Strahlenther Onkol ; 187(4): 260-6, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21437770

RESUMO

BACKGROUND AND PURPOSE: Hypoxia is a characteristic of tumors, is known to increase aggressiveness, and causes treatment resistance. Traditional classification suggests two types of hypoxia: chronic and acute. Acute hypoxia is mostly caused by transient disruptions in perfusion, while chronic hypoxia is caused by diffusion limitations. This classification may be insufficient in terms of pathogenetic and pathophysiological mechanisms. Therefore, we quantified hypoxia subtypes in tumors based on (immuno-)fluorescent marker distribution patterns in microcirculatory supply units (MCSUs). MATERIAL AND METHODS: Cryosections from hSCC lines (SAS, FaDu, UT-SCC-5, UT-SCC-14, UT-SCC-15) were analyzed. Hypoxia was identified by pimonidazole, perfusion by Hoechst 33342, and endothelial cells by CD31. The following patterns were identified in vital tumor tissue: (1) normoxia: Hoechst 33342 fluorescence around microvessels, no pimonidazole, (2) chronic hypoxia: Hoechst 33342 fluorescence around microvessels, pimonidazole distant from microvessels, (3) acute hypoxia: no Hoechst 33342 fluorescence around microvessels, pimonidazole in immediate vicinity of microvessels, and (4) hypoxemic hypoxia: Hoechst 33342 fluorescence and pimonidazole directly around microvessels. RESULTS: Quantitative assessment of MCSUs show predominance for normoxia in 4 out of 5 tumor lines (50.1-72.8%). Total hypoxia slightly prevails in UT-SCC-15 (56.9%). Chronic hypoxia is the dominant subtype (65.4-85.9% of total hypoxia). Acute hypoxia only accounts for 12.9-29.8% and hypoxemic hypoxia for 1.2-6.4% of total hypoxia. The fraction of perfused microvessels ranged from 82.5-96.6%. CONCLUSION: Chronic hypoxia is the prevailing subtype in MCSUs. Acute hypoxia and hypoxemic hypoxia account for only a small fraction. This approach enables assessment and recognition of different hypoxia subtypes including hypoxemic hypoxia and may facilitate methods to (clinically) identify and eliminate hypoxia.


Assuntos
Hipóxia Celular/fisiologia , Microcirculação/fisiologia , Microscopia de Fluorescência , Neoplasias/irrigação sanguínea , Células Tumorais Cultivadas/classificação , Células Tumorais Cultivadas/patologia , Benzimidazóis , Linhagem Celular Tumoral , Difusão , Humanos , Microvasos , Nitroimidazóis , Imagem de Perfusão , Prognóstico , Radiossensibilizantes
7.
J Nucl Med ; 51(9): 1386-94, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20720045

RESUMO

UNLABELLED: Several kinetic models have been proposed to assess the underlying oxygenation status behind hypoxia tracer uptake and have shown advantages, compared with static analysis, in discriminating hypoxic regions. However, the quantitative assessment of mathematic models that take into consideration clinical applications and their biologic nature is still challenging. We performed a feasibility study to assess hypoxia kinetic models using voxelwise cross-analysis between the uptake of the perfusion tracer (15)O-H(2)O and the hypoxia tracer (18)F-fluoroazomycin arabinoside ((18)F-FAZA). METHODS: Five patients with advanced head and neck cancer were included. For each patient, dynamic sequences of (15)O-H(2)O for 5 min and (18)F-FAZA for 60 min were acquired consecutively after injections of approximately 1 GBq and 300 MBq of each tracer, respectively. The compartment model, Thorwarth model, Patlak plot, Logan plot, and Cho model were applied to model the process of tracer transport and accumulation under hypoxic conditions. The standard 1-tissue-compartment model was used to compute a perfusion map for each patient. The hypoxia kinetic models were based on the assumption of a positive correlation between tracer delivery and perfusion and a negative (inverse) correlation between tracer accumulation (hypoxia) and perfusion. RESULTS: Positive correlations between tracer delivery and perfusion were observed for the Thorwarth and Cho models in all patients and for the reversible and irreversible 2-compartment models in 4 patients. Negative correlations between tracer accumulation and perfusion were observed for the reversible 2-compartment model in all patients and for the irreversible 2-compartment model and Cho model in 4 patients. When applied to normal skeletal muscle, the smallest correlation variance over all 5 patients was observed for the reversible 2-compartment model. CONCLUSION: Hypoxia kinetic modeling delivers different information from static measurements. Different models generate different results for the same patient, and they even can lead to opposite physiologic interpretations. On the basis of our assessment of physiologic precision and robustness, the reversible 2-compartment model corresponds better to the expectations of our assumptions than the other investigated models.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Modelos Biológicos , Nitroimidazóis/metabolismo , Água/metabolismo , Adulto , Hipóxia Celular , Estudos de Viabilidade , Feminino , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Radioisótopos de Oxigênio , Tomografia por Emissão de Pósitrons , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA