Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Stomatol Oral Maxillofac Surg ; 124(6S): 101634, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37709143

RESUMO

BACKGROUND: Apical palatal bone is important in immediate implant evaluation. Current consensus gives qualitative suggestions regarding it, limiting its clinical decision-making value. OBJECTIVES: To quantify the apical palatal bone dimension in maxillary incisors and reveal its quantitative correlation with other implant-related hard tissue indices to give practical advice for pre-immediate implant evaluation and design. MATERIAL AND METHODS: A retrospective analysis of immediate implant-related hard tissue indices in maxillary incisors obtained by cone beam computed tomography (CBCT) was conducted. Palatal bone thickness at the apex level (Apical-P) on the sagittal section was selected as a parameter reflecting the apical palatal bone. Its quantitative correlation with other immediate implant-related hard tissue indices was revealed. Clinical advice of pre-immediate implant assessment was given based on the quantitative classification of Apical-P and its other correlated immediate implant-related hard tissue indices. RESULTS: Apical-P positively correlated with cervical palatal bone, whole cervical buccal-palatal bone, sagittal root angle, and basal bone width indices. while negatively correlated with apical buccal bone, cervical buccal bone, and basal bone length indices. Six quantitative categories of Apical-P are proposed. Cases with Apical-P below 4 mm had an insufficient apical bone thickness to accommodate the implant placement, while Apical-P beyond 12 mm should be cautious about the severe implant inclination. Cases with Apical-P of 4-12 mm can generally achieve satisfying immediate implant outcomes via regulating the implant inclination. CONCLUSIONS: Quantification of the apical palatal bone index for maxillary incisor immediate implant assessment can be achieved, providing a quantitative guide for immediate implant placement in the maxillary incisor zone.


Assuntos
Processo Alveolar , Incisivo , Humanos , Incisivo/diagnóstico por imagem , Incisivo/cirurgia , Estudos Transversais , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/cirurgia , Estudos Retrospectivos , Palato , Maxila/diagnóstico por imagem , Maxila/cirurgia
2.
Environ Toxicol ; 31(6): 736-50, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25504783

RESUMO

Fluoroquinolones (FQs) and tetracyclines (TCs), the two ß-diketone antibiotics (DKAs), are two frequently detected pollutants in the environment; however, little data are available on their combined toxicity to zebrafish (Danio rerio). This study reports that toxicologic effects of combined DKA (FQs-TCs) exposure on zebrafish were comparable with or slightly less than those of TCs alone, showing that TCs played a major toxicologic role in the mixtures. The effects of FQs, TCs, and DKAs on malformation rates of zebrafish were dose dependent, with EC50 values of 481.3, 16.4, and 135.1 mg/L, respectively. According to the combined effects of DKAs on zebrafish hatching, mortality, and malformation rates, the interaction between FQs and TCs was shown to be antagonistic based on three assessment methods: Toxic Unit, Additional Index, and Mixture Toxic Index. The 1.56 mg/L TC and 9.38 mg/L DKA treatments resulted in higher zebrafish basal swimming rate compared with the control group at 120 hours postfertilization (hpf). in both light and light-to-dark photoperiod experiments. Under conditions of no obvious abnormality in cardiac development, the heart beats were decreased significantly because of DKA exposure, such as decreasing by ∼20% at 150 mg/L DKAs. Transmission electron microscopy observation of myocytes from DKA-exposed hearts displayed prominent interruptions and myofibrillar disorganization of the normal parallel alignment of thick and thin filaments, and partial edematous and dissolved membranes of cell nuclear tissues. At 90 mg/L DKAs, the transcriptional levels of the acta1a, myl7, and gle1b genes, related to heart development and skeletal muscle formation, were significantly changed. This is consistent with the swimming behavior and histopathologic results obtained by transmission electron microscopy. In summary, the toxicity of the combined DKAs to zebrafish was comparable with or less than that of TCs alone and had the ability to impair individual behaviors that are of great importance in the assessment of their ecologic fitness. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 736-750, 2016.


Assuntos
Antibacterianos/toxicidade , Fluoroquinolonas/toxicidade , Tetraciclinas/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/efeitos dos fármacos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
3.
PLoS One ; 9(7): e102731, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062015

RESUMO

ß-Diketone antibiotics (DKAs) can produce chronic toxicity in aquatic ecosystems due to their pseudo-persistent in the environment. In this study, after long-term DKA exposure to zebrafish (Danio rerio), 47 protein spots had greater than 2-fold differential expression as compared to the control; there were 26 positive proteins with 14 up-regulated and 12 down-regulated. The main functions of the differentially expressed proteins were related to signal transduction mechanisms and the cytoskeleton. Of the 26 target genes, 11 genes were consistent between their transcriptional and translational levels. Low dose DKA exposure (4.69 and 9.38 mg/L) stimulated spontaneous movement in zebrafish. Changes in both creatine kinase activity and creatine concentration showed a similar trend to zebrafish activity. There was no obvious change in SV-BA after DKA exposure, while a reduction of heart rate was concomitant with increasing DKA concentrations. DKAs also induced severe histopathological changes in zebrafish heart tissue, such as dissolution of cristae and vacuolation of mitochondria. These results demonstrated that trace-level DKA exposure affects a variety of cellular and biological processes in zebrafish.


Assuntos
Fluoroquinolonas/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Proteômica , Tetraciclinas/toxicidade , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA