Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Environ Pollut ; 281: 116979, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813190

RESUMO

In order to determine the quantitative contributions of PM2.5 on the South-west shoreline of Korea, filter based samplings were conducted in the summertime of 2017 and 2018 (total 32 days) via shipborne measurements using both a high volume and middle volume air sampler. Water-soluble organic carbon, water-soluble ions, organic carbon and elemental carbon, elemental species, and organic molecular markers by Liquid Chromatography-tandem Mass Spectrometry were utilized to characterize the collected substrates. The current study investigates the (1) chemical characteristics of PM2.5, (2) source apportionment using positive matrix factorization (PMF), and (3) relationship between sources and the dithiothreitol (DTT) assay during the two sampling periods. A mean PM2.5 concentration of 19.3 µg/m3 was observed along the entire sampling route. The ratio of water-soluble to organic carbon implies that secondary aerosol formation is dominant. The result of methanesulfonic acid (MSA) suggests the contribution of a marine-oriented biogenic source of PM2.5. The PMF source apportionment model showed six source categories with reasonably stable profiles: 1) sulfate-rich, 2) MSA-rich, 3) nitrate-rich, 4) secondary organic, 5) continental, and 6) biomass burning sources. The PMF showed three strong events (i.e., long-range transport, mixed (ocean and long-range stay), and domestic origin events) in the contributions of sources, as well as a dependence on wind transport. Higher associations with DTT oxidative potential normalized to PM2.5 mass concentration (DTT-OPm) related to long-range transport, hence, confirming the impacts of the highest intrinsic oxidative potential.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Estresse Oxidativo , Material Particulado/análise , República da Coreia , Estações do Ano , Emissões de Veículos/análise
2.
Environ Res ; 193: 110577, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309822

RESUMO

A strategy is proposed for the design of wall envelopes to improve unsteady thermal performance in non-air-conditioned buildings and to reduce energy costs in air-conditioned buildings. The thermophysical properties of building materials (e.g., burnt bricks, mud bricks, laterite stone, cinder concrete, and expanded polystyrene) were measured experimentally using a thermal analyzer. A total of 28 combinations for composite walls were designed with expanded polystyrene as an insulation material based on seven criteria and were subjected to 8 different external surface heat transfer coefficients, which were tested for unsteady thermal performance parameters and air-conditioning cost-saving potential. In this paper, unsteady thermal transmittance obtained from admittance method has been employed to compute cost saving potential of air-conditioning for the various wall envelopes. The use of C-H5 design at a 2 m/s wind speed was found to increase the decrement lag of burnt brick, mud brick, laterite stone, and cinder concrete composite wall envelopes by 48.1%, 49.0%, 59.5%, and 47.0%, respectively, relative to the common wall design (C-H1) in non-air-conditioned buildings. The laterite with a C-H5 design offers the highest annual energy cost savings (1.71 $/m2 at 2 m/s), the highest life cycle cost savings (18.32 $/m2 at 2 m/s), and the lowest payback period (4.03 yrs at 2 m/s) in all tested building materials for air-conditioned buildings. The overall results of this study are expected to open new paths to deliver simple design strategies for energy-efficient buildings.


Assuntos
Ar Condicionado , Materiais de Construção , Temperatura Alta
3.
Chemosphere ; 55(8): 1127-42, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15050810

RESUMO

In this study, we examined the influence of the long-range transport of dust particles and air pollutants on the photochemistry of OH and NO3 on Jeju Island, Korea (33.17 degrees N, 126.10 degrees E) during the Asian-dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26. Average concentration levels of daytime OH and nighttime NO3 on Jeju Island during the ADS period were estimated to be about 1x10(6) and 2x10(8) moleculescm(-3) ( approximately 9 pptv), respectively. OH levels during the ADS period were lower than those during the non-Asian-dust-storm (NADS) period by a factor of 1.5. This was likely to result from higher CO levels and the significant loading of dust particles, reducing the photolysis frequencies of ozone. Decreases in NO3 levels during the ADS period was likely to be determined mainly by the enhancement of the N2O5 heterogeneous reaction on dust aerosol surfaces. Averaged over 24 h, the reaction between HO2 and NO was the most important source of OH during the study period, followed by ozone photolysis, which contributed more than 95% of the total source. The reactions with CO, NO2, and non-methane hydrocarbons (NMHCs) during the study period were major sinks for OH. The reaction of N2O5 on aerosol surfaces was a more important sink for nighttime NO3 during the ADS due to the significant loading of dust particles. The reaction of NO3 with NMHCs and the gas-phase reaction of N2O5 with water vapor were both significant loss mechanisms during the study period, especially during the NADS. However, dry deposition of these oxidized nitrogen species and a heterogeneous reaction of NO3 were of no importance.


Assuntos
Poluentes Atmosféricos/química , Poeira/análise , Radical Hidroxila/química , Modelos Químicos , Nitratos/química , Fotoquímica , Cromatografia Gasosa , Geografia , Cinética , Coreia (Geográfico)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA