Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 806(Pt 3): 151273, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718001

RESUMO

BACKGROUND: During 2014 to 2019, the SaniPath Exposure Assessment Tool, a standardized set of methods to evaluate risk of exposure to fecal contamination in the urban environment through multiple exposure pathways, was deployed in 45 neighborhoods in ten cities, including Accra and Kumasi, Ghana; Vellore, India; Maputo, Mozambique; Siem Reap, Cambodia; Atlanta, United States; Dhaka, Bangladesh; Lusaka, Zambia; Kampala, Uganda; Dakar, Senegal. OBJECTIVE: Assess and compare risk of exposure to fecal contamination via multiple pathways in ten cities. METHODS: In total, 4053 environmental samples, 4586 household surveys, 128 community surveys, and 124 school surveys were collected. E. coli concentrations were measured in environmental samples as an indicator of fecal contamination magnitude. Bayesian methods were used to estimate the distributions of fecal contamination concentration and contact frequency. Exposure to fecal contamination was estimated by the Monte Carlo method. The contamination levels of ten environmental compartments, frequency of contact with those compartments for adults and children, and estimated exposure to fecal contamination through any of the surveyed environmental pathways were compared across cities and neighborhoods. RESULTS: Distribution of fecal contamination in the environment and human contact behavior varied by city. Universally, food pathways were the most common dominant route of exposure to fecal contamination across cities in low-income and lower-middle-income countries. Risks of fecal exposure via water pathways, such as open drains, flood water, and municipal drinking water, were site-specific and often limited to smaller geographic areas (i.e., neighborhoods) instead of larger areas (i.e., cities). CONCLUSIONS: Knowledge of the relative contribution to fecal exposure from multiple pathways, and the environmental contamination level and frequency of contact for those "dominant pathways" could provide guidance for Water, Sanitation, and Hygiene (WASH) programming and investments and enable local governments and municipalities to improve intervention strategies to reduce the risk of exposure to fecal contamination.


Assuntos
Países em Desenvolvimento , Escherichia coli , Bangladesh , Teorema de Bayes , Criança , Cidades , Monitoramento Ambiental , Fezes , Humanos , Saneamento , Senegal , Uganda , Estados Unidos , Zâmbia
2.
Front Microbiol ; 12: 673604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093494

RESUMO

Phages, such as those infecting Bacteroides spp., have been proven to be reliable indicators of human fecal contamination in microbial source tracking (MST) studies, and the efficacy of these MST markers found to vary geographically. This study reports the application and evaluation of candidate MST methods (phages infecting previously isolated B. fragilis strain GB-124, newly isolated Bacteroides strains (K10, K29, and K33) and recently isolated Kluyvera intermedia strain ASH-08), along with non-source specific somatic coliphages (SOMCPH infecting strain WG-5) and indicator bacteria (Escherichia coli) for identifying fecal contamination pathways in Kolkata, India. Source specificity of the phage-based methods was first tested using 60 known non-human fecal samples from common animals, before being evaluated with 56 known human samples (municipal sewage) collected during both the rainy and dry season. SOMCPH were present in 40-90% of samples from different animal species and in 100% of sewage samples. Phages infecting Bacteroides strain GB-124 were not detected from the majority (95%) of animal samples (except in three porcine samples) and were present in 93 and 71% of the sewage samples in the rainy and dry season (Mean = 1.42 and 1.83 log10PFU/100mL, respectively), though at lower levels than SOMCPH (Mean = 3.27 and 3.02 log10PFU/100mL, respectively). Phages infecting strain ASH-08 were detected in 89 and 96% of the sewage samples in the rainy and dry season, respectively, but were also present in all animal samples tested (except goats). Strains K10, K29, and K30 were not found to be useful MST markers due to low levels of phages and/or co-presence in non-human sources. GB-124 and SOMCPH were subsequently deployed within two low-income neighborhoods to determine the levels and origin of fecal contamination in 110 environmental samples. E. coli, SOMCPH, and phages of GB-124 were detected in 68, 42, and 28% of the samples, respectively. Analyses of 166 wastewater samples from shared community toilets and 21 samples from sewage pumping stations from the same districts showed that SOMCPH were present in 100% and GB-124 phages in 31% of shared toilet samples (Median = 5.59 and <1 log10 PFU/100 mL, respectively), and both SOMCPH and GB-124 phages were detected in 95% of pumping station samples (Median = 5.82 and 4.04 log10 PFU/100 mL, respectively). Our findings suggest that GB-124 and SOMCPH have utility as low-cost fecal indicator tools which can facilitate environmental surveillance of enteric organisms, elucidate human and non-human fecal exposure pathways, and inform interventions to mitigate exposure to fecal contamination in the residential environment of Kolkata, India.

3.
PLoS One ; 15(6): e0234364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530933

RESUMO

Inadequate sanitation can lead to exposure to fecal contamination through multiple environmental pathways and can result in adverse health outcomes. By understanding the relative importance of multiple exposure pathways, sanitation interventions can be tailored to those pathways with greatest potential public health impact. The SaniPath Exposure Assessment Tool allows users to identify and quantify human exposure to fecal contamination in low-resource urban settings through a systematic yet customizable process. The Tool includes: a project management platform; mobile data collection and a data repository; protocols for primary data collection; and automated exposure assessment analysis. The data collection protocols detail the process of conducting behavioral surveys with households, school children, and community groups to quantify contact with fecal exposure pathways and of collecting and analyzing environmental samples for E. coli as an indicator of fecal contamination. Bayesian analyses are used to estimate the percentage of the population exposed and the mean dose of fecal exposure from microbiological and behavioral data. Fecal exposure from nine pathways (drinking water, bathing water, surface water, ocean water, open drains, floodwater, raw produce, street food, and public or shared toilets) can be compared through a common metric-estimated ingestion of E. coli units (MPN or CFU) per month. The Tool generates data visualizations and recommendations for interventions designed for both scientific and lay audiences. When piloted in Accra, Ghana, the results of the Tool were comparable with that of an in-depth study conducted in the same neighborhoods and highlighted consumption of raw produce as a dominant exposure pathway. The Tool has been deployed in nine cities to date, and the results are being used by local authorities to design and prioritize programming and policy. The SaniPath Tool is a novel approach to support public-health evidence-based decision-making for urban sanitation policies and investments.


Assuntos
Microbiologia Ambiental , Monitoramento Ambiental/métodos , Fezes/microbiologia , Saneamento/estatística & dados numéricos , Software , Cidades , Tomada de Decisões , Exposição Ambiental , Monitoramento Ambiental/estatística & dados numéricos , Escherichia coli/isolamento & purificação , Contaminação de Alimentos , Gana , Humanos , Projetos Piloto , Formulação de Políticas , Pobreza , Saúde Pública , Saúde da População Urbana , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA