Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 329: 103196, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38781828

RESUMO

A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits.

2.
Environ Res ; 242: 117736, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38007083

RESUMO

Environmental contamination is a global challenge that impacts every aspect of ecosystem. The contaminants from anthropogenic or industrial trash continually recirculate into the environment, agricultural land, plants, livestock, and ultimately into humans by way of the food chain. After an increase in human and farmland animal deaths from illnesses due to contaminated drinking water, toxic metal water poisoning has remained a global concern. Diverse environmental and enforcement organisations have attempted to regulate the activities that serve as precursors to these heavy metals which have been proven ineffective. These unnecessary metals have severely hampered most biological processes. The presence of hazardous metals, which are harmful at extremely high levels and have a negative effect on the health of living bodies generally degrades the nutritional value of water. In order to evaluate the heavy metals (Cu, Ni, and Fe) toxicity of groundwater in pri-urban areas, the current study was conducted that have been considered as advance solution to tackle climate change which influence coastal ecosystem. Additionally, the impacts of soil and plant (spinach and brassica) contamination from groundwater were evaluated. The heavy metals were examined in the soil and groundwater samples (Pb, Fe and Ni). While Fe concentrations in water samples were found to be high as 1.978 mg/L as compared to Ni and Cu values low. According to WHO guidelines, the mean value of Fe exceeds the limit value. Similarly, Cu had a higher mean value (0.7 mg/L) in soil samples than other metals (Ni and Fe). In comparison to Ni and Cu, the Fe concentrations in spinach and brassica plants samples are greater, at 17.2 mg/L and 3.22 mg/L, respectively. The possible effects of metal poisoning of groundwater and plants on human health have been assessed using the Hazard Quotient (HQ), Evaluated Daily Intake (EDI), and Incremental Life Time Cancer Risk formulas (ILTCR). When drinking Ni-contaminated water, humans are more at risk of developing cancer (0.0031) than Fe and Cu. Metal concentrations in water and brassica showed substantially more scattered behaviour on the plot and no meaningful relationship, although PCA and masked matrix correlation showed a fair association between Ni and Cu in brassica (r2: 0.46) and Fe and Ni in spinach (r2: 0.31). According to the study's findings, it is anticipated that special management and groundwater monitoring will be needed in the examined area to reduce the health risks related to drinking water that has been contaminated with metals.


Assuntos
Água Potável , Metais Pesados , Neoplasias , Poluentes do Solo , Animais , Humanos , Monitoramento Ambiental/métodos , Ecossistema , Poluentes do Solo/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Resíduos Industriais/análise , Solo , Medição de Risco
3.
Environ Sci Pollut Res Int ; 30(2): 2341-2354, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36380176

RESUMO

Due to disparities in the allocation of rainwater and drought, extreme exploitation of groundwater reservoirs has depleted water supplies in many locations. In addition, improper disposal of domestic and industrial waste leads to poor drainage and deterioration of water quality. According to studies, desalination methods are an effective solution for treating unconventional water, i.e., sea and brackish water, and making it usable in daily life. Solar-powered desalination has recently received a great deal of attention around the world. Herein, we summarized challenges and future perspectives associated with solar-powered desalination units. Some hybrid technologies are also discussed like solar-wind desalination and RO-ED crystallizer technology in Morocco and the Middle East and North Africa (MENA) region. Previously, most experimental studies focused on the use of solar energy in traditional desalination methods such as multistage flash and multi-effect distillation. Desalination with reverse osmosis has become popular due to membrane technology improvement and benefits like high recovery ratios and low energy consumption. Furthermore, it has been seen that solar energy is less expensive than the energy obtained from traditional fuels in the MENA area. This article aims to comparatively and systematically review the economic feasibility of the use of solar photovoltaic reverse osmosis in desalination in the MENA region.


Assuntos
Energia Solar , Purificação da Água , Estudos de Viabilidade , Membranas Artificiais , Osmose , Purificação da Água/métodos
4.
Environ Adv ; 11: 100328, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36532331

RESUMO

One of the most significant threats to global health since the Second World War is the COVID-19 pandemic. Due to COVID-19 widespread social, environmental, economic, and health concerns. Other unfavourable factors also emerged, including increased trash brought on by high consumption of packaged foods, takeout meals, packaging from online shopping, and the one-time use of plastic products. Due to labour shortages and residents staying at home during mandatory lockdowns, city municipal administrations' collection and recycling capacities have decreased, frequently damaging the environment (air, water, and soil) and ecological and human systems. The COVID-19 challenges are more pronounced in unofficial settlements of developing nations, particularly for developing nations of the world, as their fundamental necessities, such as air quality, water quality, trash collection, sanitation, and home security, are either non-existent or difficult to obtain. According to reports, during the pandemic's peak days (20 August 2021 (741 K cases), 8 million tonnes of plastic garbage were created globally, and 25 thousand tonnes of this waste found its way into the ocean. This thorough analysis attempts to assess the indirect effects of COVID-19 on the environment, human systems, and water quality that pose dangers to people and potential remedies. Strong national initiatives could facilitate international efforts to attain environmental sustainability goals. Significant policies should be formulated like good quality air, pollution reduction, waste management, better sanitation system, and personal hygiene. This review paper also elaborated that further investigations are needed to investigate the magnitude of impact and other related factors for enhancement of human understanding of ecosystem to manage the water, environment and human encounter problems during epidemics/pandemics in near future.

5.
J Environ Manage ; 321: 115998, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36001915

RESUMO

Due to the extensive manufacturing and use of brominated flame retardants (BFRs), they are known to be hazardous, bioaccumulative, and recalcitrant pollutants in various environmental matrices. BFRs make flame-resistant items for industrial purposes (textiles, electronics, and plastics equipment) that are disposed of in massive amounts and leak off in various environmental matrices. The consumption of plastic items has expanded tremendously during the COVID-19 pandemic which has resulted into the increasing load of solid waste on land and water. Some BFRs, such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDs), are no longer utilized or manufactured owing to their negative impacts, which promotes the utilization of new BFRs as alternatives. BFRs have been discovered worldwide in soil, sludge, water, and other contamination sources. Various approaches such as photocatalysis-based oxidation/reduction, adsorption, and heat treatment have been found to eradicate BFRs from the environment. Nanomaterials with unique properties are one of the most successful methodologies for removing BFRs via photocatalysis. These methods have been praised for being low-cost, quick, and highly efficient. Engineered nanoparticles degraded BFRs when exposed to light and either convert them into safer metabolites or completely mineralize. Scientific assessment of research taking place in this area during the past five years has been discussed. This review offers comprehensive details on environmental occurrence, toxicity, and removal of BFRs from various sources. Degradation pathways and different removal strategies related to data have also been presented. An attempt has also been made to highlight the research gaps prevailing in the current research area.


Assuntos
COVID-19 , Retardadores de Chama , Hidrocarbonetos Bromados , Nanoestruturas , Monitoramento Ambiental , Retardadores de Chama/análise , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/análise , Humanos , Hidrocarbonetos Bromados/análise , Hidrocarbonetos Bromados/toxicidade , Pandemias , Plásticos , Água
6.
Environ Res ; 211: 113075, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35271831

RESUMO

Synthetic antibiotics have been known for years to combat bacterial antibiotics. But their overuse and resistance have become a concern recently. The antibiotics reach the environment, including soil from the manufacturing process and undigested excretion by cattle and humans. It leads to overburden and contamination of the environment. These organic antibiotics remain in the environment for a very long period. During this period, antibiotics come in contact with various flora and fauna. The ill manufacturing practices and inadequate wastewater treatment cause a severe problem to the water bodies. After pretreatment from pharmaceutical industries, the effluents are released to the water bodies such as rivers. Even after pretreatment, effluents contain a significant number of antibiotic residues, which affect the living organisms living in the water bodies. Ultimately, river contaminated water reaches the ocean, spreading the contamination to a vast environment. This review paper discusses the impact of synthetic organic contamination on the environment and its hazardous effect on health. In addition, it analyzes and suggests the biotechnological strategies to tackle organic antibiotic residue proliferation. Moreover, the degradation of organic antibiotic residues by biocatalyst and biochar is analyzed. The circular economy approach for waste-to-resource technology for organic antibiotic residue in China is analyzed for a sustainable solution. Overall, the significant challenges related to synthetic antibiotic residues and future aspects are analyzed in this review paper.


Assuntos
Antibacterianos , Poluentes Químicos da Água , Animais , Antibacterianos/análise , Bactérias/metabolismo , Bovinos , China , Rios , Solo , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 831: 154808, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35341870

RESUMO

Persistent organic pollutants (POPs) are organic chemicals that can persist in the environment for a longer period due to their non-biodegradability. The pervasive and bio-accumulative behavior of POPs makes them highly toxic to the environmental species including plants, animals, and humans. The present review specifies the POP along with their fate, persistence, occurrence, and risk analysis towards humans. The different biological POPs degradation methods, especially the microbial degradation using bacteria, fungi, algae, and actinomycetes, and their mechanisms were described. Moreover, the source, transport of POPs to the environmental sources, and the toxic nature of POPs were discussed in detail. Agricultural and industrial activities are distinguished as the primary source of these toxic compounds, which are delivered to air, soil, and water, affecting on the social and economic advancement of society at a worldwide scale. This review also demonstrated the microbial degradation of POPs and outlines the potential for an eco-accommodating and cost-effective approach for the biological remediation of POPs using microbes. The direction for future research in eliminating POPs from the environmental sources through various microbial processes was emphasized.


Assuntos
Poluentes Ambientais , Poluentes Orgânicos Persistentes , Animais , Monitoramento Ambiental , Poluentes Ambientais/análise , Medição de Risco , Solo , Água
8.
Environ Pollut ; 301: 118995, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35189298

RESUMO

Mercury is a highly toxic and highly mobile heavy metal. It has been regarded as more toxic than other nonessential and toxic nonradioactive heavy metals. Moreover, it has a high tendency of bioaccumulation and biomagnification in the ecosystem. This study aimed to assess the environmental and health risks related to Hg. Seventy studies related to Hg in environmental media, aquatic biota, and food stuffs across Pakistan were reviewed, and their concentrations were used for ecological and human health risk assessments. High concentrations of Hg were reported in the environment, with maximum concentrations of 72 mg L-1, 144 mg kg-1, 887 mg kg-1, and 49,807 ng m-3 in surface water, surface soil, surface sediments, and urban atmosphere, respectively. The possible non-carcinogenic health risk (hazard quotient) of Hg was assessed in soil, water, and fish. High risks were calculated for seafood and vegetable consumption, while low risks were estimated for soils and groundwater ingestion and exposure. Overall, children showed higher risks than adults. Last, the risk quotient analysis (RQ) revealed significant risks for aquatic species. RQs showed that multiple species, especially those with smaller resilience, could face long-term detrimental impacts. High, medium, and low risks were calculated from 66.66, 16.17, and 16.17% of the reported Hg concentrations.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Animais , Ecossistema , Monitoramento Ambiental , Contaminação de Alimentos/análise , Mercúrio/análise , Metais Pesados/análise , Paquistão , Medição de Risco , Poluentes do Solo/análise
9.
Environ Monit Assess ; 193(11): 750, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697651

RESUMO

The current work was conducted to study the concentrations of heavy metals (HMs) in farming soil and wheat and compute their geological and health indexes, including geo-accumulation index (Igeo), chronic daily intake (CDI), hazard index (HI), hazard quotient (HQ), and cancer risk (CR). In general, 256 samples were collected from agriculture soil (AS) and wheat in Kalaleh and Aq Qala areas, northern Iran. The average rates of Cd, Cu, Pb, and Zn were detected to be 0.28, 25.24, 15.44, and 60.33 mg·kg-1, respectively, for AS and 0.01, 8.85, 0.73, and 33.81 mg·kg-1 for wheat, respectively. Based on the results, the HQ and HI levels for investigated HMs were lower than l. So, the health risk of HMs exposure for adults and children was low. CR levels for Pb in AS for both children and adults were observed greater than the threshold value. Accordingly, lead-contaminated soil will be carcinogenic if ingested by children. On the other hand, the exposure to Pb (through wheat) and Cd (through both soil and wheat) had the acceptable CR level for all groups. As a result, for an extended period, there are no significant health consequences for children and adults.


Assuntos
Metais Pesados , Poluentes do Solo , Agricultura , China , Monitoramento Ambiental , Irã (Geográfico) , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Triticum
10.
Water Sci Technol ; 84(3): 552-575, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34388119

RESUMO

In this study, a response surface methodology (RSM) approach using central composite design (CCD) was investigated to develop a mathematical model and to optimize the effects of pH, adsorbent amount and temperature related to the hexavalent chromium removal by biosorption on peanut shells (PSh). The highest removal percentage of 30.28% was found by the predicted model under the optimum conditions (pH of 2.11, 0.73 g of PSh and 37.2 °C) for a 100 mg/L initial Cr(VI) concentration, which was very near to the experimental value (29.92%). The PSh was characterized by SEM, EDX, FTIR, BET, XRD analyses. Moreover, a Langmuir isotherm fitted well (R2 = 0.992) with the experimental data, and the maximum adsorption capacity was discovered to be 2.48 and 3.49 mg/g respectively at 25 and 45 °C. Kinetic data were well foreseen by pseudo second order. Thermodynamic study depicted that biosorption of Cr(VI) onto PSh was spontaneous and endothermic. Regeneration of the PSh using NaOH showed a loss <5% in the Cr(VI) removal efficiency up to three recycle runs. In summary, the Cr(VI) removal onto economic, sensitive and selective biosorbent (PSh) was optimized using CCD to study biosorption behaviors.


Assuntos
Poluentes Químicos da Água , Adsorção , Biomassa , Cromo/análise , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise
11.
Environ Pollut ; 278: 116855, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33706244

RESUMO

The impact of oil exploration and production activities on the environment of sub-saharan African countries is not well studied. This study aimed at determining concentrations, sources, and bioaccumulation of 13 polycyclic aromatic hydrocarbons (PAHs) in sediments and fish from the White Nile near Melut oil fields, South Sudan. The study also assessed the ecological and human health risk associated with PAHs in this aquatic system. Total (∑13) PAH concentrations ranged from 566 to 674 ng g-1dry weight (dw) in sediments, while those in fish were 191-1143 ng g-1 wet weight (ww). ∑13PAH concentrations were significantly higher in C. gariepinus than in other fish species. Low molecular weight PAHs (LPAHs) dominated the profile of PAHs in sediments (constituted 95% of ∑13PAHs) and fish (97% of ∑13PAHs). Compared to Sediment Quality Guidelines of the United States Oceanic and Atmospheric Administration, the levels of LPAHs in this study were all above the threshold effect limits, but below the probable effect level, while those of high molecular weight PAHs (HPAHs) were all below the lowest effect levels. The carcinogenic potency equivalent concentrations of PAHs in L. niloticus and C. gariepinus were above the US EPA screening level; suggesting consumption of these species could adversely affect human health. Biota-sediment accumulation factor values (range: 0.006-3.816 g OC g-1 lipid) for PAHs showed high bioaccumulation of LPAHs in fish muscle, and that bioaccumulation decreased with increase in hydrophobicity of the compounds. This is possibly because LPAHs have higher aqueous solubilities which increases their bioavailability through water-gill transfers compared to HPAHs. Profiles of PAHs in the White Nile environment indicate predominant contribution from petrogenic sources, which could be attributed to presence of crude oil reservoirs and oil production operations. More research into the levels of other environmental pollutants in the oil-rich area is recommended.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , África Oriental , Animais , Bioacumulação , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Hidrocarbonetos Policíclicos Aromáticos/análise , Medição de Risco , Poluentes Químicos da Água/análise
12.
Environ Sci Pollut Res Int ; 28(8): 10262-10282, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33442801

RESUMO

Economic growth and the rapid increase in the world population has led to a greater need for natural resources, which in turn, has put pressure on said resources along with the environment. Water, food, and energy, among other resources, pose a huge challenge. Numerous essential resources, including organic substances and valuable nutrients, can be found in wastewater, and these could be recovered with efficient technologies. Protein recovery from waste streams can provide an alternative resource that could be utilized as animal feed. Membrane separation, adsorption, and microbe-assisted protein recovery have been proposed as technologies that could be used for the aforementioned protein recovery. This present study focuses on the applicability of different technologies for protein recovery from different wastewaters. Membrane technology has been proven to be efficient for the effective concentration of proteins from waste sources. The main emphasis of the present short communication is to explore the possible strategies that could be utilized to recover or restore proteins from different wastewater sources. The presented study emphasizes the applicability of the recovery of proteins from various waste sources using membranes and the combination of the membrane process. Future research should focus on novel technologies that can help in the efficient extraction of these high-value compounds from wastes. Lastly, this short communication will evaluate the possibility of integrating membrane technology. This study will discuss the important proteins present in different industrial waste streams, such as those of potatoes, poultry, dairy, seafood and alfalfa, and the possible state of the art technologies for the recovery of these valuable proteins from the wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Animais , Resíduos Industriais , Tecnologia , Eliminação de Resíduos Líquidos , Água
13.
ACS Appl Mater Interfaces ; 12(50): 56587-56603, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33269590

RESUMO

Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-angle measurements, surface charge determination, scanning electron microscopy, atomic force microscopy, and pervaporation separation using a 5 wt % ethanol solution were used to statically evaluate the fouling/biofouling resistance and pervaporation performances of OALH and TALS membranes in this study. The TALS membrane presented a better resistance and performance. For dynamic experiments, the Box-Behnken design was used to identify the effects of substrates, microorganisms, and nutrient contents as the leading indicators of fermentation broth on the TALS membrane performances for the long-term utilization. The maximum performances of 1.88 kg/m2·h, 32.34, and 59.04 kg/m2·h concerning the permeation flux, separation factor, and pervaporation separation index were obtained, respectively. The dynamic fouling/biofouling resistance of the TALS membrane was also characterized using energy-dispersive X-ray spectroscopy of all the tested membranes. The TALS membrane demonstrated the synergistic resistance of membrane fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.


Assuntos
Incrustação Biológica/prevenção & controle , Biocombustíveis , Dimetilpolisiloxanos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Sphingomonadaceae/fisiologia
14.
Environ Sci Pollut Res Int ; 27(36): 45568-45580, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32803593

RESUMO

Nitrate, nitrite, and nitrosamines intake from the diet creates human health risks. In this study, nitrate/nitrite intake from diet and its association with nitric oxide (NO) level in humans have been surveyed. Besides nitrate/nitrite, nitrosamines risks were also determined from the diet. This study was conducted as a pilot study; 33 heathy adults participated in and completed the Food Frequency Questionnaire (FFQ) for 3 days. Then, concentrations of nitrate, nitrite, and nitrosamines were studied by the literature review. Also, the association between the intake of nitrate and nitrite with salivary and urinary NO was evaluated by Bayesian bi-variate analysis. Then, the health risk was assessed for nitrate/nitrite from food groups and drinking water, and nitrosamines from food groups based on hazard index (HI) and cancer risk with the Monte Carlo simulation. The nitrate/nitrite intakes had no association with NO level in the saliva and urine samples. The mean of HI value for the mean of 3 days was 3.57 and 0.32 from food groups and drinking water, respectively. The cancer risk amount of nitrosamines from food groups was (1.74 to 2.22) × 10-3 based on 95% confidence interval (CI 95%) values. This study showed the Iranian diet had a high risk, but drinking water consumption was safe based on nitrate/nitrite and nitrosamines for humans. There is a need to determine the concentration of nitrosamines in drinking water in Iran and to recommend for decrease risk of nitrate, nitrite, and nitrosamines exposure by food groups.


Assuntos
Nitritos , Nitrosaminas , Adulto , Teorema de Bayes , Dieta , Humanos , Irã (Geográfico) , Método de Monte Carlo , Nitratos/análise , Nitritos/análise , Projetos Piloto , Medição de Risco
15.
J Environ Manage ; 268: 110689, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32383657

RESUMO

Waste activated sludge requires effective dewatering, high biological stability and retention of nutrients prior to disposal for agricultural application. The study was conducted to evaluate the impact of pressure-driven electro-dewatering (EDW) on improving sludge characteristics related to disposal in agriculture, including biological stability, pathogen availability, heavy metals concentrations and nutrients content. Thickened conditioned and mechanically dewatered sludge samples were collected from two wastewater treatment plants (WWTPs), characterized by different stabilization processes, and treated by a lab-scale device at 5, 15 and 25 V. EDW increased significantly the dry solid (DS) content, up to 43-45%, starting from 2 to 3% of raw sludge. The endogenous value of specific oxygen uptake rate (SOUR), monitored as indicator of biological stability, increased up to 56% and 39% after EDW tests for sludge from two WWTPs. On the other hand, the exogenous SOUR decreased, indicating a significant drop in the active bacterial population. Likewise, a 1-2 log unit reduction was observed for E. coli after EDW tests at 15 and 25 V. However, no remarkable removal of heavy metals, namely chromium, nickel, lead, copper and zinc, was achieved. Finally, the concentration of nutrients for soil, such as carbon, nitrogen, phosphorus and sulfur, was not affected by the EDW process. In conclusion, EDW exerts considerable effects on the biological characteristics of sludge, which should be considered in a proper design of sludge management to ensure safe and sustainable resource recovery.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Agricultura , Escherichia coli , Água
16.
J Trace Elem Med Biol ; 52: 6-11, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30732901

RESUMO

Iodine deficiency disorders include a wide range of metabolic and nonmetabolic disorders including goiter. To control IDDs, the World Health Organization and responsible agencies in countries established daily iodine uptake. Almost all the countries in the world provide the required iodine through salt iodisation. IDDs are not completely eradicable, so monitoring the salt iodisation programme is necessary for control of IDDs. In Iran, a salt iodisation programme was started in 1996. In this study, we took salt samples from all legally produced salt brands in Iran in 30 provinces and measured iodine concentration. The results of the monitoring programme for iodine concentration in schoolchildren's urine was used to compare accessibility to iodized salts and health outcomes. The results show that more than 80% of available salts have a suitable or acceptable concentration of iodine. Despite large variance in iodine concentration in available salt in some provinces, the median of iodine concentration in salts is within an acceptable range. Also, the urinary concentration of iodine (national median = 161) confirms that shortage of iodine intake is very low in Iran. The high rate of salt consumption of the Iranian people also has a significant effect on iodine uptake, but can lead to hyperthyroidism and hypertension that must be controlled.


Assuntos
Nível de Saúde , Iodo/análise , Iodo/provisão & distribuição , Estado Nutricional , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/análise , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Iodo/administração & dosagem , Irã (Geográfico)/epidemiologia , Masculino
17.
Chemosphere ; 203: 514-520, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29649693

RESUMO

The study aims to identify the denim ozonation by-products under different operating conditions and investigate the chemical toxicity of these compounds via the inhibitory effect of the sample on the light emission of bioluminescent bacteria (Vibriofischeri) and on human health using the HepG2 human hepatoma cell line. Various by-products in treated denim extract were detected w gas chromatography-mass spectrometry (GC-MS) analysis. The results revealed that the main oxidation by-product was isatin (1H-indole-2,3-dione), which formed in excess amounts on wet ozonated denim. It was observed that this compound showed more toxicity when high ozone concentrations were used, especially in the presence of moisture. It exhibited a considerable antibacterial activity. EC20 and EC50 average values of 5.55% and 13.47% were obtained with a wet ozonation rinse bath at 48 g/N·m3, which makes it hazardous to aquatic environments.


Assuntos
Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Isatina/toxicidade , Ozônio/química , Têxteis , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Cromatografia Gasosa-Espectrometria de Massas , Células Hep G2 , Humanos , Isatina/análise , Isatina/metabolismo , Medições Luminescentes , Oxirredução
18.
J Environ Manage ; 203(Pt 2): 853-860, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28521957

RESUMO

Limestone and coffee waste were used during the wet co-granulation process for the production of efficient adsorbents to be used in the removal of anionic and cationic dyes. The adsorbents were characterized using different analytical techniques such as XRD, SEM, FTIR, organic elemental analysis, the nitrogen adsorption method, with wettability, strength and adsorption tests. The adsorption capacity of granules was determined by removal of methylene blue (MB) and orange II (OR) from single and mixed solutions. In the mixed solution, co-granules removed 100% of MB and 85% of OR. The equilibria were established after 6 and 480 h for MB and OR, respectively.


Assuntos
Carbonato de Cálcio , Café , Adsorção , Corantes , Azul de Metileno , Eliminação de Resíduos Líquidos
19.
Bull Environ Contam Toxicol ; 97(6): 855-862, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27734088

RESUMO

This study investigates the contamination levels and risk assessments of 14 elements (Ba, Cd, Co, Cr, Cu, Pb, Li, Mn, Mo, Ni, Sb, Sr, V and Zn) in three sub-basins of Himalayan rivers. Water samples were collected and the hazard quotient (HQ), hazard index (HI), and water quality index (WQI) were calculated. Total average concentrations of the metals were 135.03, 80.10 and 98.34 µg/L in Gandaki, Indrawati and Dudh Koshi rivers, respectively. The results of HQ and HI were less than unity, suggesting a low risk of metals in the region. However, HQ for antimony (Sb) was found to be 4.4 × 10-1, 2.1 × 10-1 and 5.4 × 10-1 in three river basins and HI near unity, suggesting its potential risk. Additionally, HI for Cd in Indrawati was 5.4 × 10-1 also close to unity, suggesting that Cd could have a potential risk to the local residents and aquatic ecosystems. Further, WQI suggested that the rivers Gandaki and Indrawati fell into the excellent water quality and river Dudh Koshi fell into good water quality.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Rios/química , Poluentes Químicos da Água/análise , Humanos , Nepal , Qualidade da Água
20.
Environ Pollut ; 206: 518-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26284347

RESUMO

Accurate measurements of wet mercury (Hg) deposition are critically important for the assessment of ecological responses to pollutant loading. The Hg in wet deposition was measured over a 3-year period in the southeastern Tibetan Plateau. The volume-weighted mean (VWM) total Hg (HgT) concentration was somewhat lower than those reported in other regions of the Tibetan Plateau, but the VWM methyl-Hg concentration and deposition flux were among the highest globally reported values. The VWM HgT concentration was higher in non-monsoon season than in monsoon season, and wet HgT deposition was dominated by the precipitation amount rather than the scavenging of atmospheric Hg by precipitation. The dominant Hg species in precipitation was mainly in the form of dissolved Hg, which indicates the pivotal role of reactive gaseous Hg within-cloud scavenging to wet Hg deposition. Moreover, an increasing trend in precipitation Hg concentrations was synchronous with the recent economic development in South Asia.


Assuntos
Poluentes Atmosféricos/análise , Altitude , Monitoramento Ambiental/métodos , Mercúrio/análise , Chuva , Ásia , Gases , Estações do Ano , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA