Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129288, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211926

RESUMO

Hydroxypropyl methylcellulose (HPMC)-based microparticles and modified starch emulsions (OSA-MS) were loaded with resveratrol and characterized regarding their physicochemical and thermal properties. Both delivery systems were subject to an in vitro gastrointestinal digestion to assess the bioaccessibility of resveratrol. In addition, cell-based studies were conducted after in vitro digestion and cytotoxicity and oxidative stress were assessed. HPMC-based microparticles displayed higher average sizes (d) and lower polydispersity index (PDI) (d = 948 nm, PDI < 0.2) when compared to OSA-MS-based emulsions (d = 217 nm, PDI < 0.3). Both proved to protect resveratrol under digestive conditions, leading to an increase in bioaccessibility. Resveratrol-loaded HPMC-microparticles showed a higher bioaccessibility (56.7 %) than resveratrol-loaded emulsions (19.7 %). Digested samples were tested in differentiated co-cultures of Caco-2 and HT29-MTX, aiming at assessing cytotoxicity and oxidative stress, and a lack of cytotoxicity was observed for all samples. Results displayed an increasing antioxidant activity, with 1.6-fold and 1.4-fold increases over the antioxidant activity of free resveratrol, for HPMC-microparticles and OSA-MS nanoemulsions, respectively. Our results offer insight into physiological relevancy due to assessment post-digestion and highlight the protection that the use of micro-nano delivery systems can confer to resveratrol and their potential to be used as functional food ingredients capable of providing antioxidant benefits upon consumption.


Assuntos
Antioxidantes , Anidridos Succínicos , Humanos , Emulsões/química , Antioxidantes/farmacologia , Resveratrol , Derivados da Hipromelose , Anidridos Succínicos/química , Células CACO-2 , Amido/química , Digestão
2.
Polymers (Basel) ; 14(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36365752

RESUMO

Encapsulation can be used as a strategy to protect and control the release of bioactive extracts. In this work, an extract from Spirulina sp. LEB-18, rich in phenolic compounds, was encapsulated in biopolymeric particles (i.e., composed of alginate) and characterized concerning their thermal behavior using differential scanning calorimetry (DSC), size, morphology, swelling index (S), and encapsulation efficiency (EE%); the release profile of the phenolic compounds at different pHs and the particle behavior under in vitro gastrointestinal digestion were also evaluated. It was shown that it is possible to encapsulate the phenolic extract from Spirulina sp. LEB-18 in alginate particles with high encapsulation efficiency (88.97%). It was also observed that the particles are amorphous and that the encapsulated phenolic compounds were released at a pH 7.2 but not at pH 1.5, which means that the alginate particles are able to protect the phenolic compounds from the harsh stomach conditions but lose their integrity under intestinal pH conditions. Regarding bioaccessibility, it was observed that the encapsulated phenolic compounds showed higher bioaccessibility compared to phenolic compounds in free form. This work increases the knowledge about the behavior of alginate particles encapsulating phenolic compounds during in vitro gastrointestinal digestion. It also provides essential information for designing biopolymeric particle formulations encapsulating phenolic compounds for application in pharmaceutical and food products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA