Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 282: 111964, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33485034

RESUMO

Coastal aquifer management (CAM) considering conjunctive optimization of pumping and injection system for seawater intrusion (SI) mitigation poses significant decision-making challenges. CAM needs to pose multiple objectives and massive decision variables to explore tradeoff strategies between the conflicting resources, economic, and environmental requirements. Here, we investigate a joint artificial injection scheme for ameliorating SI by establishing an evolutionary multi-objective decision-making framework that combines simulation-optimization (S-O) modelling with a cost-benefit analysis, and demonstrate the framework on a large-scale CAM case in Baldwin County, Alabama. First, a SI numerical model, using SEAWAT, was configured to predict the vulnerable region as an SI encroachment area with the scenarios of minimum and maximum pumping capacity. As a result, a smaller number of candidate sites were selected in the SI encroachment area for implementing groundwater injection to avoid the computationally infeasible SI optimization with an inordinate number of injection related decision variables. Second, the effective S-O methodology of niched Pareto tabu search combined with a genetic algorithm (NPTSGA), which considers the moving-well option, was applied to discover optimal pumping/injection (P/I) strategies (including P/I rates and injection well locations) between three conflicting management objectives under complicated SI constraints. Third, for practical operation of the P/I schemes, a cost-benefit analysis provides judgment criteria to allow decision-makers to implement more sustainable P/I strategies to capture the different realistic preferences. The implementation of three extreme optimization solutions for the case study indicates that, compared to the initial unoptimized scheme, a maximum increase of a factor of 3 in groundwater extraction rates, a maximum reduction of 17% in extent of SI, and a maximum 82.3 million US dollars in comprehensive benefits are specifically achieved by conjunctive P/I optimization. The robustness in the decision alternatives attributed to the uncertainty in physical parameters of hydraulic conductivity was discovered through global sensitivity analysis. The proposed framework provides a decision support system for multi-objective CAM with combined pumping control and engineering measures for SI mitigation.


Assuntos
Água Subterrânea , Análise Custo-Benefício , Objetivos , Água do Mar , Incerteza
2.
Sci Total Environ ; 676: 792-810, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31059895

RESUMO

Assessing environmentally sustainable GW management (ESGM) needs a deep knowledge of the present and the projected status of GW (GW) quantity and quality. Translations of these data into policy relevant information are usually done through quantitative indices. Despite the availability of a dozen GW sustainability indicators, defining an integrated index based on internationally accepted scientific standards indicators is required. To fill this gap, an in-depth review on the developed indicators/index for evaluation of GW sustainable management (GWSM) from an environmental viewpoint at aquifer scales is provided in this study. Thirteen environmentally related quantitative indicators are adopted for assessment of GWSM, especially in arid regions, depending upon data availability, and relevance of indicators. An integrated ESGM index (ESGMI) is developed based on weighted aggregation of thirteen adopted indicators through multi criteria decision making (MCDM) methods. ESGMI value ranged between 0 and 100, zero value denotes to the worst state or unsustainable GW management (GWM) and 100 indicates the ideal state or GWM is sustainable. Thirty important aquifers across Iran are chosen to implement the ESGMI at the national scale of a country known to be the fifth largest global GW user. ESGMI values for thirty of Iran's aquifers are obtained in the range 15.40 to 68.50 (on average, 49.96). This reveals the unsustainable status of GWM in this country. The results of this study demonstrate that the ESGMI is a promising tool to determine the current state of GW quantity and quality, reveals the effect of policy actions and plans, and contributes to the development and operation of effective sustainable management policies for GW resources. Due to uncertainties and spatio-temporal variabilities of key controlling variables in GW management, sustainability evaluation should be understood as a dynamic and iterative process, requiring persistent monitoring, analysis, prioritization, and modification.

3.
PLoS One ; 11(10): e0164733, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27741300

RESUMO

The argument that human society can decouple economic growth-defined as growth in Gross Domestic Product (GDP)-from growth in environmental impacts is appealing. If such decoupling is possible, it means that GDP growth is a sustainable societal goal. Here we show that the decoupling concept can be interpreted using an easily understood model of economic growth and environmental impact. The simple model is compared to historical data and modelled projections to demonstrate that growth in GDP ultimately cannot be decoupled from growth in material and energy use. It is therefore misleading to develop growth-oriented policy around the expectation that decoupling is possible. We also note that GDP is increasingly seen as a poor proxy for societal wellbeing. GDP growth is therefore a questionable societal goal. Society can sustainably improve wellbeing, including the wellbeing of its natural assets, but only by discarding GDP growth as the goal in favor of more comprehensive measures of societal wellbeing.


Assuntos
Meio Ambiente , Produto Interno Bruto , Desenvolvimento Econômico , Humanos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA