Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 344: 118323, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37354588

RESUMO

The degradation of marine ecosystems is a growing concern worldwide, emphasizing the need for efficient tools to assess their ecological status. Herein, a novel ecosystem-based ecological evaluation index of shallow rocky reefs is introduced and tested in the Aegean and Ionian Seas (NE Mediterranean). The index focuses on a specific set of pre-selected species, including habitat-forming, key, commercially important, and non-indigenous species, across a wide range of trophic levels (1.00-4.53). Data acquisition is conducted through rapid non-destructive SCUBA diving surveys to assess all macroscopic food web components (macroalgae, invertebrates, and fish). Two versions of the index, ECOfast and ECOfast-NIS, were developed, each applying a different approach to account for the impact of non-indigenous species. In our case study, the correlations between the two versions of the index and sea surface temperature, protection status, occurrence of carnivorous fish, and non-indigenous herbivores were assessed through generalized additive models (GAMs). The assessment assigned 93% (ECOfast) or 96% (ECOfast-NIS) of the sites to a moderate to bad ecological status, indicating an alarming situation in the shallow rocky reefs of the NE Mediterranean. Sites evaluated as poor or bad were characterized by extensive coverage of ephemeral macroalgae, absence or minimal presence of large indigenous carnivorous fish, and complete absence of one to three out of five invertebrate functional trophic groups. The community composition of macroalgae, herbivorous species, and carnivorous fishes differed between the 5 m and 15 m depth zones. Surface temperature and carnivorous fish occurrence were the most important tested predictors of the ecological status of shallow rocky reefs. The best GAMs showed that the ECOfast score declined with sea surface temperature and increased with the occurrence of carnivorous fish; ECOfast-NIS declined with sea surface temperature and the occurrence of non-indigenous fish and increased with the occurrence of carnivorous fish. The non-destructive and integrative nature of this approach, its speed of data acquisition and analysis, and its capacity to account for highly mobile predatory fish and non-indigenous species render the ECOfast index a novel, robust, and valuable tool for assessing the ecological status of shallow rocky reefs.


Assuntos
Ecossistema , Alga Marinha , Animais , Recifes de Corais , Cadeia Alimentar , Peixes , Comportamento Predatório
2.
J Environ Manage ; 305: 114370, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968935

RESUMO

Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.


Assuntos
Biodiversidade , Ecossistema , Animais , Conservação dos Recursos Naturais , Europa (Continente) , Peixes , Mar Mediterrâneo
3.
Conserv Biol ; 29(4): 1228-1234, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25704365

RESUMO

Effective ecosystem-based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components' vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions.


Hacia un Marco de Trabajo para la Evaluación y el Manejo de los Impactos Humanos Acumulativos sobre las Redes Alimenticias Marinas Resumen El manejo efectivo con base en los ecosistemas requiere entender la respuesta de los ecosistemas a múltiples amenazas humanas en lugar de enfocarse en amenazas individuales. Para entender holísticamente la respuesta de los ecosistemas a las múltiples amenazas antropogénicas es necesario saber cómo estas amenazas afectan a los diferentes componentes dentro de los ecosistemas y cómo alteran finalmente el funcionamiento de los ecosistemas. Usamos el estudio de caso de la red alimenticia del pasto marino del Mediterráneo (Posidonia oceanica) y la obtención de conocimiento de expertos en una aplicación de los pasos iniciales de un método para la evaluación de los impactos humanos acumulativos sobre las redes alimenticias. Produjimos un modelo de red alimenticia de pastos marinos, determinamos las principales relaciones tróficas, identificamos a las principales amenazas para los componentes de la red y evaluamos la vulnerabilidad de los componentes a esas amenazas. Algunas amenazas tuvieron impactos altos (p. ej.: infraestructura costera) o bajos (p. ej.: escorrentía agrícola) sobre todos los componentes de la red, mientras que otros (p. ej.: carnívoros introducidos) tuvieron impactos muy diferentes sobre cada componente. Partir al ecosistema en sus componentes nos permitió identificar amenazas no vistas previamente y reevaluar la importancia de las amenazas percibidas comúnmente como mayores. Al incorporar este entendimiento de la vulnerabilidad del sistema con datos sobre los cambios en el estado de cada amenaza (p. ej.: disminución de la contaminación doméstica e incremento de la pesca) al modelo de red alimenticia, los manejadores pueden ser capaces de estimar y predecir de mejor manera los impactos humanos acumulativos sobre los ecosistemas y priorizar las acciones de conservación.


Assuntos
Alismatales/fisiologia , Conservação dos Recursos Naturais/métodos , Cadeia Alimentar , Pesqueiros , Humanos , Mar Mediterrâneo , Poluição Química da Água/efeitos adversos
4.
PLoS One ; 8(10): e76449, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155901

RESUMO

Spatial priorities for the conservation of three key Mediterranean habitats, i.e. seagrass Posidonia oceanica meadows, coralligenous formations, and marine caves, were determined through a systematic planning approach. Available information on the distribution of these habitats across the entire Mediterranean Sea was compiled to produce basin-scale distribution maps. Conservation targets for each habitat type were set according to European Union guidelines. Surrogates were used to estimate the spatial variation of opportunity cost for commercial, non-commercial fishing, and aquaculture. Marxan conservation planning software was used to evaluate the comparative utility of two planning scenarios: (a) a whole-basin scenario, referring to selection of priority areas across the whole Mediterranean Sea, and (b) an ecoregional scenario, in which priority areas were selected within eight predefined ecoregions. Although both scenarios required approximately the same total area to be protected in order to achieve conservation targets, the opportunity cost differed between them. The whole-basin scenario yielded a lower opportunity cost, but the Alboran Sea ecoregion was not represented and priority areas were predominantly located in the Ionian, Aegean, and Adriatic Seas. In comparison, the ecoregional scenario resulted in a higher representation of ecoregions and a more even distribution of priority areas, albeit with a higher opportunity cost. We suggest that planning at the ecoregional level ensures better representativeness of the selected conservation features and adequate protection of species, functional, and genetic diversity across the basin. While there are several initiatives that identify priority areas in the Mediterranean Sea, our approach is novel as it combines three issues: (a) it is based on the distribution of habitats and not species, which was rarely the case in previous efforts, (b) it considers spatial variability of cost throughout this socioeconomically heterogeneous basin, and (c) it adopts ecoregions as the most appropriate level for large-scale planning.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Alismatales/fisiologia , Cavernas , Custos e Análise de Custo , Pesqueiros/economia , Geografia , Mar Mediterrâneo , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA