Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 75(1): 140-148, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665417

RESUMO

BACKGROUND: Voriconazole exhibits in vitro activity against Candida glabrata and Candida krusei (EUCAST/CLSI epidemiological cut-off values 1/0.25 and 1/0.5 mg/L, respectively). Yet, EUCAST found insufficient evidence to set breakpoints for these species. We explored voriconazole pharmacodynamics (PD) in an in vitro dynamic model simulating human pharmacokinetics (PK). METHODS: Four C. glabrata and three C. krusei isolates (voriconazole EUCAST and CLSI MICs of 0.03-2 mg/L) were tested in the PK/PD model simulating voriconazole exposures (t½ ∼6 h q12h dosing for 3 days). PK/PD breakpoints were determined calculating the PTA for exposure indices fAUC0-24/MIC associated with half-maximal activity (EI50) using Monte Carlo simulation analysis. RESULTS: Fungal load increased from 3.60±0.35 to 8.41±0.24 log10 cfu/mL in the drug-free control, with a maximum effect of ∼1 log10 kill of C. glabrata and C. krusei isolates with MICs of 0.06 and 0.25 mg/L, respectively, at high drug exposures. The 72 h log10 cfu/mL change versus fAUC0-24/MIC relationship followed a sigmoid curve for C. glabrata (R2=0.85-0.87) and C. krusei (R2=0.56-0.76) with EI50 of 49 (32-76) and 52 (33-78) fAUC/MIC for EUCAST and 55 (31-96) and 80 (42-152) fAUC/MIC for CLSI, respectively. The PTAs for C. glabrata and C. krusei isolates with EUCAST/CLSI MICs ≤0.125/≤0.06 mg/L were >95%. Isolates with EUCAST/CLSI MICs of 0.25-1/0.125-0.5 would require trough levels 1-4 mg/L; isolates with higher MICs would not attain the corresponding PK/PD targets without reaching toxicity. CONCLUSIONS: The in vitro PK/PD breakpoints for C. glabrata and C. krusei for EUCAST (0.125 mg/L) and CLSI (0.06 mg/L) bisected the WT populations. Trough levels of >4 mg/L, which are not clinically feasible, are necessary for efficacy against WT isolates.


Assuntos
Antifúngicos/farmacocinética , Candida glabrata/efeitos dos fármacos , Pichia/efeitos dos fármacos , Voriconazol/farmacocinética , Antifúngicos/farmacologia , Farmacorresistência Fúngica , Testes de Sensibilidade Microbiana , Modelos Biológicos , Método de Monte Carlo , Voriconazol/farmacologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-31871083

RESUMO

Updated information on the epidemiology of candidemia, particularly during severe socioeconomic events, is important for proper management of these infections. A systematic literature review on candidemia in Greece and a retrospective surveillance study were conducted in a tertiary university hospital during the years of the recent financial crisis (2009 to 2018) in order to assess changes in incidence rates, patient characteristics, species distribution, antifungal susceptibilities, and drug consumption. The average annual incidence of 429 candidemic episodes was 2.03/10,000 bed days, with 9.88 in adult intensive care units (ICUs), 1.74 in surgical wards, and 1.81 in internal medicine wards, where a significant increase was observed (1.15, 1.85, and 2.23/10,000 bed days in 2009 to 2011, 2012 to 2014, and 2015 to 2018, respectively; P = 0.004). Candida albicans was the most common species (41%), followed by Candida parapsilosis species complex [SC] (37%), Candida glabrata SC (11%), Candida tropicalis (7%), Candida krusei (1%), and other rare Candida spp. (3%). Mixed infections were found in 20/429 (4.7%) cases, while 33 (7%) cases were due to non-Candida spp. Overall, 44/311 (14%) isolates were resistant/non-wild type (WT) to the nine antifungals tested, with 23/113 (20%) C. parapsilosis SC and 2/34 (6%) C. glabrata SC isolates being resistant to fluconazole (1 panechinocandin and 2 panazole resistant). All isolates were susceptible/WT to amphotericin B and flucytosine. While the overall consumption of antifungals diminished (P = 0.02), with a mean of 17.93 defined daily doses (DDD)/100 bed days, increased micafungin use was correlated with the rise in C. parapsilosis SC (P = 0.04). A significant increase of candidemia in internal medicine wards and of C. parapsilosis SC infections was found during the years of financial crisis. Although resistance rates remain low (<14%), fluconazole-resistant C. parapsilosis SC and multidrug-resistant C. glabrata SC isolates are of major concern.


Assuntos
Antifúngicos/uso terapêutico , Candidemia/tratamento farmacológico , Candidemia/epidemiologia , Sepse/tratamento farmacológico , Sepse/epidemiologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/patogenicidade , Candida tropicalis/efeitos dos fármacos , Candida tropicalis/patogenicidade , Candidemia/microbiologia , Farmacorresistência Fúngica/genética , Fluconazol/uso terapêutico , Grécia , Humanos , Pichia/efeitos dos fármacos , Pichia/patogenicidade , Sepse/microbiologia , Atenção Terciária à Saúde
3.
J Antimicrob Chemother ; 71(11): 3135-3147, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27494912

RESUMO

BACKGROUND: Combination therapy of voriconazole with an echinocandin is often employed in order to increase the efficacy of voriconazole monotherapy. METHODS: Four clinical Aspergillus fumigatus isolates with different in vitro susceptibilities to voriconazole (MIC 0.125-2 mg/L) and anidulafungin (MEC 0.008-0.016 mg/L) were tested in an in vitro pharmacokinetic/pharmacodynamic model simulating human serum concentrations of standard dosages of voriconazole and anidulafungin. Fungal growth was assessed using galactomannan production and quantitative PCR. Drug concentrations were determined with bioassays. Pharmacodynamic interactions were assessed using Bliss independence analysis (BI) and Loewe additivity-based canonical mixture response-surface non-linear regression analysis (LA). Probability of target attainment (PTA) was estimated with Monte Carlo analysis for different doses of anidulafungin (25, 50 and 100 mg) and azole resistance rates (5%-25%). RESULTS: Synergy [BI 51% (8%-80%), LA 0.63 (0.38-0.79)] was found at low anidulafungin (fCmax/MEC <10) and voriconazole (fAUC/MIC <10) exposures, whereas antagonism [BI 12% (5%-18%, LA 1.12 (1.04-4.6)] was found at higher drug exposures. The largest increase in PTA was found with 25 mg of anidulafungin and voriconazole MIC distributions with high (>10%) resistance rates. PTAs for isolates with voriconazole MICs of 1, 2 and 4 mg/L was 78%, 12% and 0% with voriconazole monotherapy and 96%-100%, 68%-82% and 9%-20% with combination therapy, respectively. Optimal activity was associated with a voriconazole tCmin/MIC ratio of 1.5 for monotherapy and 0.75 for combination therapy. CONCLUSIONS: The present study indicated that the combination of voriconazole with low-dose anidulafungin may increase the efficacy and reduce the cost and potential toxicity of antifungal therapy, particularly against azole-resistant A. fumigatus isolates and in patients with subtherapeutic serum levels. This hypothesis warrants further in vivo verification.


Assuntos
Antifúngicos/administração & dosagem , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Equinocandinas/administração & dosagem , Voriconazol/administração & dosagem , Anidulafungina , Antifúngicos/farmacocinética , Antifúngicos/farmacologia , DNA Fúngico/análise , Quimioterapia Combinada/métodos , Equinocandinas/farmacocinética , Equinocandinas/farmacologia , Galactose/análogos & derivados , Humanos , Mananas/análise , Testes de Sensibilidade Microbiana , Modelos Teóricos , Método de Monte Carlo , Reação em Cadeia da Polimerase em Tempo Real , Voriconazol/farmacocinética , Voriconazol/farmacologia
4.
Antimicrob Agents Chemother ; 59(7): 3973-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896699

RESUMO

Although amphotericin B-azole combination therapy has traditionally been questioned due to potential antagonistic interactions, it is often used successfully to treat refractory invasive aspergillosis. So far, pharmacodynamic (PD) interactions have been assessed with conventional in vitro tests, which do not mimic human serum concentrations and animal models using limited doses. We therefore simulated the human serum concentration profiles of amphotericin B and voriconazole in an in vitro dialysis/diffusion closed pharmacokinetic-pharmacodynamic (PK-PD) model and studied the pharmacodynamic interactions against an azole-resistant and an azole-susceptible Aspergillus fumigatus isolate, using Bliss independence and canonical mixture response surface analyses. Amphotericin B dosing regimens with the drug administered every 24 h (q24h) were combined with voriconazole q12h dosing regimens. In vitro PK-PD combination data were then combined with human PK data by using Monte Carlo analysis. The target attainment rate and the serum concentration/MIC ratio were calculated for isolates with different MICs. Synergy (20 to 31%) was observed at low amphotericin B-high voriconazole exposures, whereas antagonism (-6 to -16%) was found at high amphotericin B-low voriconazole exposures for both isolates. Combination therapy resulted in 17 to 48% higher target attainment rates than those of monotherapy regimens for isolates with voriconazole/amphotericin B MICs of 1 to 4 mg/liter. Optimal activity was found for combination regimens with a 1.1 total minimum concentration of drug in serum (tCmin)/MIC ratio for voriconazole and a 0.5 total maximum concentration of drug in serum (tCmax)/MIC ratio for amphotericin B, whereas the equally effective monotherapy regimens required a voriconazole tCmin/MIC ratio of 1.8 and an amphotericin B tCmax/MIC ratio of 2.8. Amphotericin B-voriconazole combination regimens were more effective than monotherapy regimens. Therapeutic drug monitoring can be employed to optimize antifungal combination therapy with low-dose (≤0.6 mg/kg) amphotericin B-based combination regimens against resistant isolates for minimal toxicity.


Assuntos
Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Azóis/uso terapêutico , Polienos/uso terapêutico , Anfotericina B/administração & dosagem , Anfotericina B/uso terapêutico , Antifúngicos/farmacocinética , Azóis/farmacocinética , Interações Medicamentosas , Monitoramento de Medicamentos , Farmacorresistência Fúngica , Quimioterapia Combinada , Meia-Vida , Humanos , Testes de Sensibilidade Microbiana , Modelos Estatísticos , Método de Monte Carlo , Polienos/farmacocinética , Voriconazol/administração & dosagem , Voriconazol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA