Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Control Release ; 352: 199-210, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084816

RESUMO

Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.


Assuntos
Doenças Transmissíveis , Lipossomos , Animais , Camundongos , Humanos , Lipossomos/química , Distribuição Tecidual , Antibacterianos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tomografia por Emissão de Pósitrons , Imagem Multimodal , Lipídeos
2.
PLoS One ; 12(4): e0176075, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448604

RESUMO

The purpose of this work was to use various molecular imaging techniques to non-invasively assess GSK2849330 (anti HER3 ADCC and CDC enhanced 'AccretaMab' monoclonal antibody) pharmacokinetics and pharmacodynamics in human xenograft tumor-bearing mice. Immuno-PET biodistribution imaging of radiolabeled 89Zr-GSK2849330 was assessed in mice with HER3 negative (MIA-PaCa-2) and positive (CHL-1) human xenograft tumors. Dose dependency of GSK2849330 disposition was assessed using varying doses of unlabeled GSK2849330 co-injected with 89Zr-GSK2849330. In-vivo NIRF optical imaging and ex-vivo confocal microscopy were used to assess the biodistribution of GSK2849330 and the HER3 receptor occupancy in HER3 positive xenograft tumors (BxPC3, and CHL-1). Ferumoxytol (USPIO) contrast-enhanced MRI was used to investigate the effects of GSK2849330 on tumor macrophage content in CHL-1 xenograft bearing mice. Immuno-PET imaging was used to monitor the whole body drug biodistribution and CHL-1 xenograft tumor uptake up to 144 hours post injection of 89Zr-GSK2849330. Both hepatic and tumor uptake were dose dependent and saturable. The optical imaging data in the BxPC3 xenograft tumor confirmed the tumor dose response finding in the Immuno-PET study. Confocal microscopy showed a distinguished cytoplasmic punctate staining pattern within individual CHL-1 cells. GSK2849330 inhibited tumor growth and this was associated with a significant decrease in MRI signal to noise ratio after USPIO injection and with a significant increase in tumor macrophages as confirmed by a quantitative immunohistochemistry analysis. By providing both dose response and time course data from both 89Zr and fluorescently labeled GSK2849330, complementary imaging studies were used to characterize GSK2849330 biodistribution and tumor uptake in vivo. Ferumoxytol-enhanced MRI was used to monitor aspects of the immune system response to GSK2849330. Together these approaches potentially provide clinically translatable, non-invasive techniques to support dose optimization, and assess immune activation and anti-tumor responses.


Assuntos
Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais/farmacocinética , Macrófagos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Receptor ErbB-3/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Linhagem Celular Tumoral , Feminino , Óxido Ferroso-Férrico/química , Humanos , Imuno-Histoquímica , Marcação por Isótopo , Macrófagos/citologia , Macrófagos/patologia , Camundongos , Camundongos Nus , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Radioisótopos , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/uso terapêutico , Receptor ErbB-3/metabolismo , Distribuição Tecidual , Transplante Heterólogo , Zircônio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA