Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36484757

RESUMO

How can data on the occurrence of pharmaceuticals and personal care products (PPCPs) in the environment and the quality of ecosystems exposed to PPCPs be used to determine whether current regulatory risk assessment schemes are effective? This is one of 20 "big questions" concerning PPCPs in the environment posed in a landmark review paper in 2012. Ten years later, we review the developments around this question, focusing on the first P in PPCPs, that is, pharmaceuticals, or more specifically the active ingredients included in them (active pharmaceutical ingredients, APIs). We illustrate how extensive data on both the occurrence of APIs and the ecotoxicological sensitivity of aquatic species to them can be used in a retrospective risk assessment. In the Netherlands, current regulatory risk assessment schemes offer insufficient protection against direct ecotoxicological effects from APIs: the toxic pressure exerted by the 39 APIs included in our study exceeds the policy-related protective threshold of 0.05 (the "95%-protection level") in at least 13% of sampled surface waters. In general, anti-inflammatory and antirheumatic products (e.g., diclofenac, ibuprofen) contributed most to the overall toxic pressure, followed by sex hormones and modulators of the genital system (e.g., ethinylestradiol) and psychoanaleptics (e.g., caffeine). We formulated three open questions for future research. The first relates to improving the availability and accessibility of good-quality ecotoxicity data on pharmaceuticals for the global scientific, regulatory, and general public. The second relates to the adaptation of regulatory risk assessment frameworks for developing regions of the world. The third relates to the integration of effect-based and ecological approaches into regulatory risk assessment practice. Environ Toxicol Chem 2023;00:1-12. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Environ Int ; 164: 107234, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35483182

RESUMO

In this study, 56 effluent samples from 52 European wastewater treatment plants (WWTPs) were investigated for the occurrence of 499 emerging chemicals (ECs) and their associated potential risks to the environment. The two main objectives were (i) to extend our knowledge on chemicals occurring in treated wastewater, and (ii) to identify and prioritize compounds of concern based on three different risk assessment approaches for the identification of consensus mixture risk drivers of concern. Approaches include (i) PNEC and EQS-based regulatory risk quotients (RQs), (ii) species sensitivity distribution (SSD)-based hazard units (HUs) and (iii) toxic units (TUs) for three biological quality elements (BQEs) algae, crustacean, and fish. For this purpose, solid-phase extracts were analysed with wide-scope chemical target screening via liquid chromatography high-resolution mass spectrometry (LC-HRMS), resulting in 366 detected compounds, with concentrations ranging from < 1 ng/L to > 100 µg/L. The detected chemicals were categorized with respect to critical information relevant for risk assessment and management prioritization including: (1) frequency of occurrence, (2) measured concentrations, (3) use groups, (4) persistence & bioaccumulation, and (5) modes of action. A comprehensive assessment using RQ, HU and TU indicated exceedance of risk thresholds for the majority of effluents with RQ being the most sensitive metric. In total, 299 out of the 366 compounds were identified as mixture risk contributors in one of the approaches, while 32 chemicals were established as consensus mixture risk contributors of high concern, including a high percentage (66%) of pesticides and biocides. For samples which have passed an advanced treatment using ozonation or activated carbon (AC), consistently much lower risks were estimated.


Assuntos
Praguicidas , Poluentes Químicos da Água , Purificação da Água , Animais , Monitoramento Ambiental , Praguicidas/análise , Medição de Risco , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA