Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Toxicol Pharmacol ; 64: 48-59, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30296657

RESUMO

This study aimed at demonstrating that effect-based monitoring with passive sampling followed by toxicity profiling is more protective and cost-effective than the current chemical water quality assessment strategy consisting of compound-by-compound chemical analysis of selected substances in grab samples. Passive samplers were deployed in the Dutch river delta and in WWTP effluents. Their extracts were tested in a battery of bioassays and chemically analyzed to obtain toxicity and chemical profiles, respectively. Chemical concentrations in water were retrieved from publicly available databases. Seven different strategies were used to interpret the chemical and toxicity profiles in terms of ecological risk. They all indicated that the river sampling locations were relatively clean. Chemical-based monitoring resulted for many substances in measurements below detection limit and could only explain <20% of the observed in vitro toxicity. Effect-based monitoring yielded more informative conclusions as it allowed for ranking the sampling sites and for estimating a margin-of-exposure towards chronic effect ranges. Effect-based monitoring was also cheaper and more cost-effective (i.e. yielding more information per euro spent). Based on its identified strengths, weaknesses, opportunities, and threats (SWOT), a future strategy for effect-based monitoring has been proposed.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Androgênios/análise , Androgênios/toxicidade , Animais , Bioensaio , Estrogênios/análise , Estrogênios/toxicidade , Mutagênicos/análise , Mutagênicos/toxicidade , Países Baixos , Rios/química , Qualidade da Água
2.
Environ Sci Technol ; 52(6): 3574-3582, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29488382

RESUMO

This work presents the results of an international interlaboratory comparison on ex situ passive sampling in sediments. The main objectives were to map the state of the science in passively sampling sediments, identify sources of variability, provide recommendations and practical guidance for standardized passive sampling, and advance the use of passive sampling in regulatory decision making by increasing confidence in the use of the technique. The study was performed by a consortium of 11 laboratories and included experiments with 14 passive sampling formats on 3 sediments for 25 target chemicals (PAHs and PCBs). The resulting overall interlaboratory variability was large (a factor of ∼10), but standardization of methods halved this variability. The remaining variability was primarily due to factors not related to passive sampling itself, i.e., sediment heterogeneity and analytical chemistry. Excluding the latter source of variability, by performing all analyses in one laboratory, showed that passive sampling results can have a high precision and a very low intermethod variability (

Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Monitoramento Ambiental , Compostos Orgânicos , Medição de Risco
3.
Sci Total Environ ; 576: 720-737, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27810758

RESUMO

Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment.

4.
Environ Sci Eur ; 27(1): 5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27752421

RESUMO

Bioaccumulation, the accumulation of a chemical in an organism relative to its level in the ambient medium, is of major environmental concern. Thus, monitoring chemical concentrations in biota are widely and increasingly used for assessing the chemical status of aquatic ecosystems. In this paper, various scientific and regulatory aspects of bioaccumulation in aquatic systems and the relevant critical issues are discussed. Monitoring chemical concentrations in biota can be used for compliance checking with regulatory directives, for identification of chemical sources or event-related environmental risk assessment. Assessing bioaccumulation in the field is challenging since many factors have to be considered that can affect the accumulation of a chemical in an organism. Passive sampling can complement biota monitoring since samplers with standardised partition properties can be used over a wide temporal and geographical range. Bioaccumulation is also assessed for regulation of chemicals of environmental concern whereby mainly data from laboratory studies on fish bioaccumulation are used. Field data can, however, provide additional important information for regulators. Strategies for bioaccumulation assessment still need to be harmonised for different regulations and groups of chemicals. To create awareness for critical issues and to mutually benefit from technical expertise and scientific findings, communication between risk assessment and monitoring communities needs to be improved. Scientists can support the establishment of new monitoring programs for bioaccumulation, e.g. in the frame of the amended European Environmental Quality Standard Directive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA