Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 36(1): 105-16, 2004 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-15351054

RESUMO

An in vitro reactive intermediate screening assay, incorporating the use of the close analog of glutathione, glutathione ethyl ester (GSH-EE) as a conjugating agent, was developed to identify compounds that form reactive intermediates in an in vitro metabolite generating system. The biological assay consisted of substrate [s] = 10 microM, human liver microsomes, an NADPH generating system and glutathione ethyl ester. Conjugates were extracted from the biological matrix using a combination of protein precipitation and a semi-automated 96-well plate solid phase extraction (SPE) procedure. A micro-bore liquid chromatography-micro-electrospray ionization-tandem mass spectrometry (microLC-microESI-MS/MS) method detected glutathione ethyl ester conjugates using selected reaction monitoring (SRM) to simultaneously monitor for multiple MH+ to [MH - 129]+ transitions, where the 129 mass unit (Da) represents the neutral loss of the pyroglutamate moiety from GSH-EE. The multiple MH+ to [MH - 129]+ transitions (SRM mass table) were generated for potential reactive intermediates of each compound. Glutathione (GSH) and GSH-EE conjugate standards were used to evaluate MS detection sensitivity. Based on direct comparison of standard curve data, an approximate 10-fold increase in sensitivity was observed for conjugates containing GSH-EE moiety versus GSH. In vitro experiments were conducted using literature substrates acetaminophen, rosiglitazone, clozapine, diclofenac and either GSH-EE or GSH as a reactive intermediate conjugating agent. An increase in detection sensitivity was observed for each GSH-EE conjugate and in the case of acetaminophen-GSH-EE the peak area increase was approximately 80-fold. Twelve drug compounds, each having known biotransformation mechanisms, were used to further test the detection capabilities of the assay and establish a concordance to literature data. When GSH was used in the assay, conjugates were detected for 4 out of the 12 test compounds (33%). When GSH-EE was used in the assay, conjugates were detected for 10 out of the 12 test compounds (83%).


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Glutationa/análogos & derivados , Glutationa/metabolismo , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/análise , Bioensaio , Biotransformação , Cromatografia Líquida , Humanos , Preparações Farmacêuticas/metabolismo , Espectrometria de Massas por Ionização por Electrospray
2.
Chem Res Toxicol ; 15(4): 551-61, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11952342

RESUMO

Liquid chromatography with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) was used to measure DNA adducts of the carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) with a microbore C-18 reversed-phase column. Quantification of the isomeric adducts N-(deoxyguanosin-8-yl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (dG-C8-MeIQx) and 5-(deoxyguanosin-N(2)-yl)-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (dG-N(2)-MeIQx) was achieved using synthetic, isotopically labeled internal standards. The reaction of the N-acetoxy ester of 2-(hydroxyamino)-3,8-dimethylimidazo[4,5-f]quinoxaline (HONH-MeIQx) with calf thymus DNA (ct DNA) resulted in formation of these adducts in a ratio of 5:1 (dG-C8-MeIQx:dG-N(2)-MeIQx). The detection limit by LC/ESI-MS/MS in the selected reaction monitoring (SRM) mode ([MH(+) --> MH - 116](+)) (loss of deoxyribose) approached 500 fg (1 fmol) of adduct standard, and 1 adduct per 10(8) DNA bases using 100 microg of DNA following solid-phase extraction. The SRM analysis of rat liver DNA 24 h after an oral dose of MeIQx (10 and 0.5 mg/kg) revealed the presence of isomeric dG-MeIQx adducts at levels of 3.07 +/- 0.84 and 0.45 +/- 0.27 adducts per 10(7) bases, respectively. LC/ESI-MS/MS product ion spectra were acquired on both adducts from the elevated dose of MeIQx for unambiguous adduct identification. The contribution of dG-N(2)-MeIQx to the total adducts in vivo was significantly more important than that observed in vitro. dG-C8-MeIQx was the principal adduct formed at the 10 mg/kg dose, (dG-C8-MeIQx:dG-N(2)-MeIQx (3:2)); however, dG-N(2)-MeIQx was the major lesion detected at the 0.5 mg/kg dose (dG-C8-MeIQx:dG-N(2)-MeIQx 1:10). The striking differences between the relative amounts of dG-C8-MeIQx and dG-N(2)-MeIQx formed in vivo as a function of dose suggest that reactive esters of HONH-MeIQx other than N-acetoxy-MeIQx may be formed in vivo and react preferentially with the N(2) atom of guanine, or that dG-C8-MeIQx is removed at a significantly more rapid rate than dG-N(2)-MeIQx. The dG-N(2)-MeIQx adduct, previously thought to be a minor adduct, is likely to be an important contributor to the genotoxic damage of MeIQx.


Assuntos
Carcinógenos/química , Adutos de DNA/análise , Fígado/química , Quinoxalinas/química , Animais , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , DNA/química , DNA/efeitos dos fármacos , DNA/metabolismo , Adutos de DNA/efeitos dos fármacos , Adutos de DNA/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Quinoxalinas/metabolismo , Quinoxalinas/toxicidade , Ratos , Ratos Endogâmicos F344 , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA